Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767924
Title: Optically switched quantum key distribution network
Author: Tang, Xinke
ISNI:       0000 0004 7651 6329
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Encrypted data transmission is becoming increasingly more important as information security is vital to modern communication networks. Quantum Key Distribution (QKD) is a promising method based on the quantum properties of light to generate and distribute unconditionally secure keys for use in classical data encryption. Significant progress has been achieved in the performance of QKD point-to-point transmission over a fibre link between two users. The transmission distance has exceeded several hundred kilometres of optical fibre in recent years, and the secure bit rate achievable has reached megabits per second, making QKD applicable for metro networks. To realize quantum encrypted data transmission over metro networks, quantum keys need to be regularly distributed and shared between multiple end users. Optical switching has been shown to be a promising technique for cost-effective QKD networking, enabling the dynamic reconfiguration of transmission paths with low insertion loss. In this thesis, the performance of optically switched multi-user QKD systems are studied using a mathematical model in terms of transmission distance and secure key rates. The crosstalk and loss limitations are first investigated theoretically and then experimentally. The experiment and simulation both show that negligible system penalties are observed with crosstalk of -20 dB or below. A practical quantum-safe metro network solution is then reported, integrating optically-switched QKD systems with high speed reconfigurability to protect classical network traffic. Quantum signals are routed by rapid optical switches between any two endpoints or network nodes via reconfigurable connections. Proof-of-concept experiments with commercial QKD systems are conducted. Secure keys are continuously shared between virtualised Alice-Bob pairs over effective transmission distances of 30 km, 31.7 km, 33.1 km and 44.6 km. The quantum bit error rates (QBER) for the four paths are proportional to the channel losses with values between 2.6% and 4.1%. Optimising the reconciliation and clock distribution architecture is predicted to result in an estimated maximum system reconfiguration time of 20 s, far shorter than previously demonstrated. In addition, Continuous Variable (CV) QKD has attracted much research interest in recent years, due to its compatibility with standard telecommunication techniques and relatively low cost in practical implementation. A wide band balanced homodyne detection system built from modified off-the-shelf components is experimentally demonstrated. Practical limits and benefits for high speed CVQKD key transmission are demonstrated based on an analysis of noise performance. The feasibility of an optically switched CV-QKD is also experimentally demonstrated using two virtualised Alice-Bob pairs for the first time. This work represents significant advances towards the deployment of CVQKD in a practical quantum-safe metro network. A method of using the classical equalization technique for Inter-symbol-interference mitigation in CVQKD detection is also presented and investigated. This will encourage further research to explore the applications of classical communication tools in quantum communications.
Supervisor: Penty, Richard Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.767924  DOI:
Keywords: quantum key distribution ; optical switches ; Metropolitan area networks
Share: