Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767849
Title: Thermoelectric properties of carbon nanotube films
Author: Miranda Reyes, Cesar Alejandro
ISNI:       0000 0004 7651 2838
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Thermoelectric generators are solid state machines used to convert temperature gradients into electrical energy. They are formed by several thermoelectric units connected electrically in series and thermally in parallel. These units are made by creating a junction between a p-type and an n-type conductor. This investigation documents the characterisation of the thermoelectric properties of carbon nanotube (CNT) films and the fabrication process of carbon nanotube-based thermoelectric devices. The Seebeck coefficient is a intrinsic property of a thermoelectric material that correlates the voltage produced by a conductor and the temperature gradient applied to it. To measure the Seebeck coefficient of films, an experimental set-up was fabricated and calibrated using constantan as standard material. CNT films of aligned nanotubes fabricated using a chemical vapour deposition method were analysed. The Seebeck coefficient along and across the samples did not show significant variations, with values between 40$\mu$V/K and 80$\mu$V/K. Using these CNT films, thermoelectric cells were fabricated with the CNT as the p-type conductor and constantan as the n-type. As a proof of concept, two hand-made thermoelectric generators were assembled by connecting hundreds of these thermoelectric cells. These devices were subjected to a temperature gradient of $\approx$200K, which was enough to produce enough power to light an LED. Other analytical techniques were used to characterise the materials used in this work. Electrical conductivity measurements, thermogravimetric analysis, Raman spectroscopy and scanning electron microscopy were performed. Using a deposition technique, films of nanotubes were produced from a liquid phase. The impact of the production method on their properties was evaluated. Characterisation equipment was developed to measure the Seebeck coefficient and thermal conductivity. Thermoelectric devices made with the carbon nanotube films were fabricated and characterised. The values of thermal conductivity of the CNT films analysed in this work are between 0.86Wm$^{-1}$K$^{-1}$. The electrical conductivity of these materials is between 3500Sm$^{-1}$ and 14100Sm$^{-1}$. The maximum figure of merit of the carbon nanotube thermoelectric devices fabricated in this work is $ZT$=0.35.
Supervisor: Koziol, Krzysztof Sponsor: CONACyT ; Cambridge Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.767849  DOI:
Keywords: carbon nanotubes ; thermoelectric ; carbon nanotube films
Share: