Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767793
Title: Towards justifying computer algebra algorithms in Isabelle/HOL
Author: Li, Wenda
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
As verification efforts using interactive theorem proving grow, we are in need of certified algorithms in computer algebra to tackle problems over the real numbers. This is important because uncertified procedures can drastically increase the size of the trust base and under- mine the overall confidence established by interactive theorem provers, which usually rely on a small kernel to ensure the soundness of derived results. This thesis describes an ongoing effort using the Isabelle theorem prover to certify the cylindrical algebraic decomposition (CAD) algorithm, which has been widely implemented to solve non-linear problems in various engineering and mathematical fields. Because of the sophistication of this algorithm, people are in doubt of the correctness of its implementation when deploying it to safety-critical verification projects, and such doubts motivate this thesis. In particular, this thesis proposes a library of real algebraic numbers, whose distinguishing features include a modular architecture and a sign determination algorithm requiring only rational arithmetic. With this library, an Isabelle tactic based on univariate CAD has been built in a certificate-based way: external, untrusted code delivers solutions in the form of certificates that are checked within Isabelle. To lay the foundation for the multivariate case, I have formalised various analytical results including Cauchy's residue theorem and the bivariate case of the projection theorem of CAD. During this process, I have also built a tactic to evaluate winding numbers through Cauchy indices and verified procedures to count complex roots in some domains. The formalisation effort in this thesis can be considered as the first step towards a certified computer algebra system inside a theorem prover, so that various engineering projections and mathematical calculations can be carried out in a high-confidence framework.
Supervisor: Paulson, Lawrence Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.767793  DOI:
Keywords: formal verification ; theorem proving ; Isabelle/HOL ; computer algebra ; cylindrical algebraic decomposition
Share: