Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767786
Title: Using new tools to study the neural mechanisms of sensation : auditory processing in locusts and translational motion vision in flies
Author: Isaacson, Matthew David
ISNI:       0000 0004 7661 0390
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This thesis describes work from both the University of Cambridge in the lab of Berthold Hedwig and from the HHMI Janelia Research Campus in the lab of Michael Reiser. At the University of Cambridge, my work involved the development and demonstration of a method for electrophoretically delivering dyes and tracers for anatomical and functional imaging into animals that are not amenable to genetic labelling techniques. Using this method in locusts and crickets - model systems of particular interest for their acoustic communication - I successfully delivered polar fluorescent dyes and tracers through the sheath covering the auditory nerve, simultaneously staining both the peripheral sensory structures and the central axonal projections without destroying the nerve's function. I could label neurons which extend far from the tracer delivery site on the nerve as well as local neuron populations through the brain's surface. I used the same method to deliver calcium indicators into central neuropils for in vivo optical imaging of sound-evoked activity, as well as calling song-evoked activity in the brain. The work completed at the Janelia Research Campus began with the development of a modern version of a modular LED display and virtual reality control system to enable research on the visual control of complex behaviors in head-fixed animals. The primary advantages of our newly developed LED-based display over other display technologies are its high-speed operation, brightness uniformity and control, precise synchronization with analog inputs and outputs, and its ability to be configured into a variety of display geometries. Utilizing the system's fast display refresh rates, I conducted the first accurate characterization of the upper limits of the speed sensitivity of Drosophila for apparent motion during flight. I also developed a flexible approach to presenting optic flow scenes for functional imaging of motion-sensitive neurons. Finally, through the on-line analysis of behavioral measures, image rendering, and display streaming with low latency to multi-color (UV/Green) LED panels, I demonstrated the ability to create more naturalistic stimuli and interactive virtual visual landscapes. Lastly, I used this new visual display system to explore a newly discovered cell-type that had been implicated in higher-order motion processing from a large genetic screen of visually-guided behavior deficits. Using genetic silencing and activation methods, and by designing stimuli that modeled the optic flow encountered during different types of self-motion, colleagues in the Reiser lab and I showed that this cell-type - named Lobula Plate Columnar 1 (LPC1) - is required for the stopping behavior of walking flies caused by back-to-front translation motion but is not involved in the rotational optomotor response. Using calcium imaging, I found that LPC1 was selectively excited by back-to-front motion on the eye ipsilateral to the neuron population and inhibited by front-to-back motion on the contralateral eye, demonstrating a simple mechanism for its selectivity to translation over rotation. I also examined an anatomically similar cell type - named Lobula-Lobula Plate Columnar type 1 (LLPC1) - and found that its selectivity results from a similar but opposite calculation for the detection of front-to-back translational motion. The detection of back-to-front motion had previously been hypothesized to be useful for collision avoidance, and this work provides a neural mechanism for how this detection could be accomplished, as well as providing a platform from which to explore the larger network for translation optic flow.
Supervisor: Hedwig, Berthold ; Reiser, Michael Sponsor: University of Cambridge
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.767786  DOI:
Keywords: neuroscience ; behavior ; drosophila ; cricket ; locust ; motion vision ; acoustic communication ; methods ; imaging ; calcium imaging ; electroporation ; staining ; genetic targeting ; gene expression ; optogenetics ; LED display ; virtual reality ; calling-song ; phonotaxis ; optomotor ; optic flow
Share: