Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.766890
Title: Heat capacity measurements of Sr₂RuO₄ under uniaxial stress
Author: Li, You-Sheng
ISNI:       0000 0004 7656 8161
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The most-discussed pairing symmetry in Sr₂RuO₄ is chiral p-wave, pₓ ± p[sub]y, whose degeneracy is protected by the lattice symmetry. When the lattice symmetry is lowered by the application of a symmetry-breaking field, the degeneracy can be lifted, potentially leading to a splitting of the superconducting transition. To lift the degeneracy, the symmetry breaking field used in this study is uniaxial stress. Uniaxial stress generated by a piezo-electric actuator can continuously tune the electronic structure and in situ lower the tetragonal symmetry in Sr₂RuO₄. Previous studies of magnetic susceptibility and resistivity under uniaxial stress have revealed that there is a strong peak in T[sub]c when the stress is applied along the a-axis of Sr₂RuO₄. In addition, it has been proposed that the peak in T[sub]c coincides with a van Hove singularity in the band structure, and measurements of Hc₂ at the maximum T[sub]c indicate the possibility of an even parity condensate for Sr₂RuO₄ at the peak in Tc. In this thesis, the heat capacity approach is used to study the thermodynamic behavior of Sr₂RuO₄ under uniaxial stress applied along the crystallographic a-axis of Sr₂RuO₄. The first thermodynamic evidence for the peak in T[sub]c is obtained, proving that is a bulk property. However, the experimental data show no clear evidence for splitting of the superconducting transition; only one phase transition can be identified within the experimental resolution. The results impose strong constraints on the existence of a second phase transition, i.e. the size of the second heat capacity jump would be small or the second T[sub]c would have to be very close to the first transition. In addition to these results, I will present heat capacity data from the normal state of Sr₂RuO₄. The experimental results indicate that there is an enhancement of specific heat at the peak in T[sub]c, consistent with the existence of the van Hove singularity. The possibility of even parity superconductivity at the maximum T[sub]c has also been investigated. However, the heat capacity measurements are shown to be relatively insensitive to such a change, so it has not been possible to obtain strong and unambiguous evidence for whether it takes place or not.
Supervisor: Mackenzie, Andrew Sponsor: University of St Andrews ; Engineering and Physical Sciences Research Council (EPSRC) ; Max-Planck-Gesellschaft zur Förderung der Wissenschaften
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.766890  DOI: Not available
Keywords: Heat capacity ; Uniaxial stress ; Strain ; Superconductivity ; Sr2RuO4 ; Van Hove singularity
Share: