Use this URL to cite or link to this record in EThOS:
Title: Active template synthesis of chiral interlocked molecules
Author: Modicom, Florian
ISNI:       0000 0004 7656 5585
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Mechanically interlocked molecules are very interesting compounds for their architecture. The core of these molecules is readily accessible using a large range of synthetic approaches that give access to a wide range of functional group for applications such as sensors, molecular machines or catalyst. This last field attracts attention with the recent emergence of enantioselective catalytic platform and tuneable catalysts, such as on and off switchable or stimuli response catalysts. In this thesis, the starting chapter highlights the evolution of the synthesis of mechanically interlocked molecules and a selection of chiral systems with recent applications in enantioselective transformations. The following chapter illustrates the influence of the mechanical bond in copper-catalysed transformations. This involved the synthesis of a model rotaxane and the application of rotaxane-based ligand in various copper-catalysed transformations with improvement in terms of diastereoselectivity and conversion. The third chapter is an illustration of a modification of reactivity related to the mechanical bond. The unprecedented tandem reaction, of an otherwise stable moiety, for the synthesis of rotaxanes highlighted in this chapter was a feature of the mechanical bond. The fourth chapter is dedicated to the improvement of an existing approach for the production of simple catenanes in excellent yield. The approach developed in this chapter was extended to multicomponent systems with unprecedented success. The last chapter in an extension of the fourth chapter to access chiral catenanes. The development of a new approach for the accessible synthesis of topologically chiral catenanes enabled the access of usually very complicated molecules.
Supervisor: Goldup, Stephen Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available