Use this URL to cite or link to this record in EThOS:
Title: Energy efficiency in cellular wireless networks
Author: Pochaiya, Charernkiat
ISNI:       0000 0004 7654 2148
Awarding Body: University of Reading
Current Institution: University of Reading
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Energy efficiency of Long Term Evolution (LTE) cellular communication networks has become a major concern for network operators, not only to reduce the operational costs, but also to reduce their environmental effects. Within LTE cellular networks, base stations are responsible for most of the energy consumption, consuming 70-95% or more of the network power depending on the network topology, configuration, radio technology and data rates that are used. Power control is an important function in cellular wireless networks and refers to setting the output power levels of transmitters, termed eNodeB in the downlink and user equipment (UEs) in the uplink. LTE utilizes two different mechanisms for uplink power control: Open Loop Power Control (OLPC) and Closed Loop Power Control (CLPC). Uplink OLPC is performed by the UE following eNodeB configuration and can compensate for long term channel variation such as path loss and shadowing. The uplink CLPC mechanism attempts to improve power control performance by compensating fast channel variations due to multipath fading. In CLPC the eNodeB sends Transmit Power Control (TPC) commands to the UE to adjust the UE's transmit power. This thesis focuses on an Open Loop Power Control (OLPC) scheme for LTE uplink by using the Okumura-Hata propagation path loss model to set the User Equipment (UE) uplink transmit power control parameters in order to reduce the UE energy consumption. In general, the UE requires more power to connect to distant base stations than closer base stations and therefore this thesis analyses the required power levels using the Okumura-Hata propagation path loss model. Estimation of path loss is very important in initial deployment of wireless network and cell planning. This thesis analyses the Okumura-Hata propagation path loss in different receiver antenna heights (h_bs), different path loss compensation factor (α) and different eNodeB sensitivity (P_o) in urban, suburban and rural environments. The results from this analysis can be used to optimally set the UE transmit power, but also to create improved relay sections in a hybrid link in order to achieve optimum data rate transfer while maximizing battery lifetime of the UE. This work is one further step toward 'green' cellular networks.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available