Use this URL to cite or link to this record in EThOS:
Title: Advanced polymeric materials for tendon repair
Author: Liu, Renjie
ISNI:       0000 0004 7654 1284
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Tendons transfer forces from muscle to bone and allow the locomotion of the body. However, tendons, especially for tendons in the hand, get lacerated commonly in different injuries and the healing of tendon within the narrow channel in the hand will normally lead to tendon adhesion and sacrificed tendon mechanics. Researches have been focused on addressing tendon adhesion prevention but neglecting healed tendon mechanics. This thesis discusses the principles and challenges in the design of biomaterials regarding flexor tendon repair with advanced polymer chemistry and materials science. A rational platform, not only focusing on the prevention of tendon adhesion, but devoting more efforts on final healed properties of tendons via implementing glycopolymer-based materials to guide tendon cells attachment, was designed, fabricated and characterized. Controlled ring opening polymerizations and atom transfer radical polymerizations were combined for the synthesis of miktoarm well-defined block copolymers. Para-fluorine click reactions were then implemented to afford glycopolymers with glucose units. Obtained copolymers were transformed into 3D membranes constituting a porous fibrous structure utilizing electrospinning. The aligned structure was then fabricated to optimize the mechanics of these materials for practical application as well as reconstruct normal tendon physiological structure. Lastly, the toxicity, cell affinity and cell activity of obtained materials were evaluated in vitro employing tendon cells as a cell line to confirm the suitability of obtained platforms for flexor tendon repair.
Supervisor: Not available Sponsor: Chinese Scholarship Council ; Donghua University
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Tendon mechanics ; Biomaterials ; Polymeric materials ; Tendon repair