Use this URL to cite or link to this record in EThOS:
Title: Antenna design with characteristic mode analysis for Internet of Things applications
Author: Zhang, Qianyun
ISNI:       0000 0004 7653 9731
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
The TV white space (TVWS) is one of the promising technologies to provide wide coverage, energy effcient and cost effective Internet of Things (IoT) services. However, its low operating frequency and wide bandwidth poses significant challenges to antenna designs. In this thesis, three antennas are developed using the characteristic mode analysis (CMA) for IoT devices operating over the TVWS. First, a very-low profile circular small antenna is transformed from a vertical monopole antenna. The CMA is used to determine the mode to be excited and to design a specific feeding structure. After being printed on Rogers 5880 substrate, the final antenna structure operates at 474 MHz with a V SWR < 2 bandwidth of 2.2 MHz. Its lateral radius is just 5.2% of the wavelength of its resonant frequency. Second, a compact U-shaped printed UWB monopole antenna is proposed to operate over the entire UHF TV spectrum. This antenna measures 0:36 0 0:06 0 0:01 0 where 0 is the wavelength of its lowest operating frequency. Its V SWR < 2 bandwidth is 87.5%, and the UWB behaviour is discussed by the CMA. Third, a novel antenna design method is established on annular ring-shaped structures with modal characteristics revealed by the CMA. Following the proposed method, another UWB antenna is achieved by creating and exciting multiple modes with resonant frequencies distributed across the UHF TV spectrum. All antenna designs are verified thorough simulations and measurements. Furthermore, antennas are also integrated into IoT devices and their system performance is measured under different communication scenarios. The system measurements also verify the good propagation property and the abundant spectrum resource of the TVWS.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electronic Engineering and Computer Science ; Internet of Things ; TV white space ; Antennas and networks