Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.766163
Title: Investigations of LIMD1 in miRNA-mediated gene silencing and cancers
Author: Li, Yigen
ISNI:       0000 0004 7653 7162
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In recent years, LIM domains-containing protein 1 (LIMD1) has been identified as a critical component in microRNA (miRNA)-induced silencing complex (miRISC) to regulate miRNA-mediated gene silencing. Human Argonaute (AGO) 2 with its family members (AGO1-4) are critical for the biogenesis of miRNA and thus miRNA-mediated gene silencing. In this study, we have investigated the direct interaction interfaces between LIMD1 and AGO2. A distinct interface within LIMD1, amino acid (a.a) 140-166, is identified to be responsible for the binding to AGO2 and other members of AGO family. Furthermore, the Linker-2 (L2) domain within AGO2 is identified to be responsible for LIMD1 binding and its dependency on the phosphorylation at serine 387 (S387) residue within the L2 domain of AGO2. The phospho-mimic mutant (S387E) enhances the binding of AGO2 to LIMD1, whereas the phospho-deficient mutant (S387A) attenuates AGO2-LIMD1 interaction. In addition, the association of LIMD1 with other AGOs is also dependent on the phosphorylation at the equivalent conserved serine residue within the L2 domain on other AGOs. In addition to the above aspects, LIMD1 is a tumour suppressor gene frequently down-regulated in more than 75% human lung tumours. Because of their loss of expressions or functions, it is of the inherent difficulty in targeting tumour suppressor genes to treat cancers. In this study, the concept of synthetic lethality was used to identify possible protein kinases, the ablation of which are synthetically lethal to LIMD1 negative cancer cell lines. As a result, drugs that target these kinases may represent novel targeted therapies for LIMD1 negative lung tumours. ACVR2B and STK39 are validated to be synthetically lethal with LIMD1 loss. Additionally, the complete loss of LIMD1 expression causes a dramatic increase of STK39 expression due to miRNA-mediated gene silencing pathway. The inverse relationship between LIMD1 and STK39 may represent a conserved and fundamental signalling response and may be a predictive marker for STK39-targeted therapy.
Supervisor: Not available Sponsor: Great Britain-China Educational Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.766163  DOI: Not available
Keywords: LIMD1 ; Argonaute ; miRNa silencing ; miRISC ; syntehtic lethality ; STK39
Share: