Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.766117
Title: Frictional interaction of elastomeric materials
Author: David Stratford, Devalba
ISNI:       0000 0004 7653 5896
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The frictional behaviour of rubber is a topic of great interest and importance due to the invaluable uses of rubber in industry. The very particular behaviour of rubber also makes rubber friction a fascinating subject matter. Despite this it is still a topic not well understood. Previous studies have attempted to link the fracture mechanics of rubber crack propagation to the adhesive friction of rubber. The feasibility of such an approach to the adhesive friction of a rough rubber against a smooth surface, a configuration which can occur in various situations such as rubber seals or windscreen wipers, has been investigated. Rolling friction, described well by a fracture-like peeling process, is used to evaluate the viscoelastic dependence of sliding friction for various combinations of surfaces. A novel use of rubber is proposed as a material for particles to be used for jamming based soft robotics applications. This area of soft robotics is comparatively new and the materials that are being used at present are neither well established nor have been examined in great detail. Rubber would offer a material easily manufactured to desired shapes and dimensions with a wide range of moduli allowing modification to suit specific applications. The effect of jammed rubber particles on the response of a jammed packing to an externally applied load is examined. The evolution of inter-particle forces is studied using a rheometer configuration. Finite element techniques and modelling are employed to study the rubber in more detail.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.766117  DOI: Not available
Keywords: Engineering and Materials Science ; Elastomeric Materials ; Rubber friction
Share: