Use this URL to cite or link to this record in EThOS:
Title: Determining individual chromosome missegregation rates and the responses to aneuploidy in human cells
Author: Worrall, Joseph Thomas
ISNI:       0000 0004 7653 5116
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Genomic instability and aneuploidy, which are ubiquitous hallmarks of cancer cells, encompass both structural and numerical chromosome aberrations. Strikingly, cancer cells often display recurrent patterns of aneuploidy which are thought to be contingent on selection pressures within the tumour microenvironment maintaining advantageous karyotypes. However, it is currently unknown if individual chromosomes are intrinsically vulnerable to missegregation, and therefore whether chromosome bias may also contribute to pathological aneuploidy patterns. Moreover, the earliest responses to chromosome missegregation in non-transformed cells, and how these are overcome in cancer, has remained elusive due to the difficult nature of isolating nascent aneuploid cells. Results. Individual chromosomes displayed recurrent patterns of biased missegregation in response to a variety of cellular stresses across cell lines. Likewise, a small subset of chromosomes accounted for a large fraction of segregation errors following one specific mechanism driving aneuploidy. This was supported by the discovery that chromosomes 1 and 2 are strikingly susceptible to the premature loss of sister chromatid cohesion during prolonged prometaphase arrest. Additionally, I have elucidated the arrangement of individual metaphase human chromosomes, highlighting missegregation vulnerabilities occurring at the metaphase plate periphery following nocodazole wash-out. Finally, I have developed a novel system for isolating nascent aneuploid cells, suggesting the earliest transcriptome responses to chromosome missegregation in non-transformed human cells involve ATM and BCL2-mediated apoptosis.
Supervisor: Not available Sponsor: Medical Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Genomic instability ; aneuploidy ; cancer cells ; chromosome missegregation