Use this URL to cite or link to this record in EThOS:
Title: Neural networks for analysing music and environmental audio
Author: Sigtia, Siddharth
ISNI:       0000 0004 7652 6631
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this thesis, we consider the analysis of music and environmental audio recordings with neural networks. Recently, neural networks have been shown to be an effective family of models for speech recognition, computer vision, natural language processing and a number of other statistical modelling problems. The composite layer-wise structure of neural networks allows for flexible model design, where prior knowledge about the domain of application can be used to inform the design and architecture of the neural network models. Additionally, it has been shown that when trained on sufficient quantities of data, neural networks can be directly applied to low-level features to learn mappings to high level concepts like phonemes in speech and object classes in computer vision. In this thesis we investigate whether neural network models can be usefully applied to processing music and environmental audio. With regards to music signal analysis, we investigate 2 different problems. The fi rst problem, automatic music transcription, aims to identify the score or the sequence of musical notes that comprise an audio recording. We also consider the problem of automatic chord transcription, where the aim is to identify the sequence of chords in a given audio recording. For both problems, we design neural network acoustic models which are applied to low-level time-frequency features in order to detect the presence of notes or chords. Our results demonstrate that the neural network acoustic models perform similarly to state-of-the-art acoustic models, without the need for any feature engineering. The networks are able to learn complex transformations from time-frequency features to the desired outputs, given sufficient amounts of training data. Additionally, we use recurrent neural networks to model the temporal structure of sequences of notes or chords, similar to language modelling in speech. Our results demonstrate that the combination of the acoustic and language model predictions yields improved performance over the acoustic models alone. We also observe that convolutional neural networks yield better performance compared to other neural network architectures for acoustic modelling. For the analysis of environmental audio recordings, we consider the problem of acoustic event detection. Acoustic event detection has a similar structure to automatic music and chord transcription, where the system is required to output the correct sequence of semantic labels along with onset and offset times. We compare the performance of neural network architectures against Gaussian mixture models and support vector machines. In order to account for the fact that such systems are typically deployed on embedded devices, we compare performance as a function of the computational cost of each model. We evaluate the models on 2 large datasets of real-world recordings of baby cries and smoke alarms. Our results demonstrate that the neural networks clearly outperform the other models and they are able to do so without incurring a heavy computation cost.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electronic Engineering and Computer Science ; neural networks ; music signal analysis ; acoustic event detection