Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.765897
Title: A multidisciplinary design optimisation framework for structural problems with disparate variable dependence
Author: Ollar, Jonathan
ISNI:       0000 0004 7652 6121
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Multidisciplinary design optimisation incorporates several disciplines in one integrated optimisation problem. The benefi t of considering all requirements at once rather than in individual optimisations is that synergies between disciplines can be exploited to fi nd superior designs to what would otherwise be possible. The main obstacle for the use of multidisciplinary design optimisation in an industrial setting is the related computational cost which may become prohibitively large. This work is focused on the development of a multidisciplinary design optimisation framework that extends the existing trust-region based optimisation method known as the mid-range approximation method. The main novel contribution is an approach to solving multidisciplinary design optimisation problems using metamodels built in sub-spaces of the design variable space. Each metamodel is built in the sub-space relevant to the corresponding discipline while the optimisation problem is solved in the full design variable space. Since the metamodels are built in a space of reduced dimensionality, the computational budget for building them can be reduced without compromising their quality. Furthermore, a method for efficiently building kriging metamodels is proposed. This is done by means of a two-step hyper parameter tuning strategy. The fi rst step is a line search where the set of tuning parameters is treated as a single variable. The solution of the fi rst step is used in the second step, a gradient based hyper parameter optimisation where partial derivatives are obtained using the adjoint method. The framework is demonstrated on two examples, a multidisciplinary design optimisation of a thin-walled beam section subject to static and impact requirements, and a multidisciplinary design optimisation of an aircraft wing subject to static and bird strike requirements. In both cases the developed technique demonstrates a reduced computational effort compared to what would typically be achieved by existing methods.
Supervisor: Not available Sponsor: European Union
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.765897  DOI: Not available
Keywords: Engineering and Materials Science ; Structural and Multidisciplinary Optimization
Share: