Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.765879
Title: Bandwidth-efficient video streaming with network coding on peer-to-peer networks
Author: Huang, Shenglan
ISNI:       0000 0004 7652 5487
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Over the last decade, live video streaming applications have gained great popularity among users but put great pressure on video servers and the Internet. In order to satisfy the growing demands for live video streaming, Peer-to-Peer(P2P) has been developed to relieve the video servers of bandwidth bottlenecks and computational load. Furthermore, Network Coding (NC) has been proposed and proved as a significant breakthrough in information theory and coding theory. According to previous research, NC not only brings substantial improvements regarding throughput and delay in data transmission, but also provides innovative solutions for multiple issues related to resource allocation, such as the coupon-collection problem, allocation and scheduling procedure. However, the complex NC-driven P2P streaming network poses substantial challenges to the packet scheduling algorithm. This thesis focuses on the packet scheduling algorithm for video multicast in NC-driven P2P streaming network. It determines how upload bandwidth resources of peer nodes are allocated in different transmission scenarios to achieve a better Quality of Service(QoS). First, an optimized rate allocation algorithm is proposed for scalable video transmission (SVT) in the NC-based lossy streaming network. This algorithm is developed to achieve the tradeoffs between average video distortion and average bandwidth redundancy in each generation. It determines how senders allocate their upload bandwidth to different classes in scalable data so that the sum of the distortion and the weighted redundancy ratio can be minimized. Second, in the NC-based non-scalable video transmission system, the bandwidth ineffi- ciency which is caused by the asynchronization communication among peers is reduced. First, a scalable compensation model and an adaptive push algorithm are proposed to reduce the unrecoverable transmission caused by network loss and insufficient bandwidth resources. Then a centralized packet scheduling algorithm is proposed to reduce the unin- formative transmission caused by the asynchronized communication among sender nodes. Subsequently, we further propose a distributed packet scheduling algorithm, which adds a critical scalability property to the packet scheduling model. Third, the bandwidth resource scheduling for SVT is further studied. A novel multiple- generation scheduling algorithm is proposed to determine the quality classes that the receiver node can subscribe to so that the overall perceived video quality can be maxi- mized. A single generation scheduling algorithm for SVT is also proposed to provide a faster and easier solution to the video quality maximization function. Thorough theoretical analysis is conducted in the development of all proposed algorithms, and their performance is evaluated via comprehensive simulations. We have demon- strated, by adjusting the conventional transmission model and involving new packet scheduling models, the overall QoS and bandwidth efficiency are dramatically improved. In non-scalable video streaming system, the maximum video quality gain can be around 5dB compared with the random push method, and the overall uninformative transmiss- sion ratio are reduced to 1% - 2%. In scalable video streaming system, the maximum video quality gain can be around 7dB, and the overall uninformative transmission ratio are reduced to 2% - 3%.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.765879  DOI: Not available
Keywords: Electronic Engineering ; live video streaming ; Network Coding ; Peer-to-Peer
Share: