Use this URL to cite or link to this record in EThOS:
Title: Interaction between the vascular endothelial glycocalyx and flow in vitro
Author: Lin, Miao
ISNI:       0000 0004 7652 357X
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Vascular diseases, such as stroke and heart attacks, account for more than 50% of abnormal death worldwide. The cause of these diseases is linked to malfunctions of vascular endothelial cells, in particular the endothelial glycocalyx. This study investigates the location and stability of the endothelial glycocalyx under different flow conditions in vitro. AFM (Atomic Force Microscopy) micro indentation is carried out on endothelial cell membrane to determine its Young's modulus. The Young's modulus of the glycocalyx layer is then deduced from measurements on cell membranes with, and those without, the glycocalyx layer. Heparan sulphate (HS) is an important component of the glycocalyx and can be removed by the enzyme heparinase-III (Hep-III). Our results show the glycocalyx on cultured Human Umbilical Vein Endothelial Cells (HUVECs) has a Young's modulus of ~0.64Kpa. We further observe how the Young's modulus of the endothelial cell membrane decreases with time, as the glycocalyx layer redevelops, following its removal by Hep-III. Steady and oscillatory shear stimulations are used in flow chamber experiments. Under 24 hours' steady shear stimulation (12.6 dyn/cm2), cells are seen to elongate and reorient parallel to the flow direction. The glycocalyx is seen to shift to the peripheral region of the cell surface. With actin depolymerisation treatment, significant shedding of the glycocalyx from the luminal surface of the cell is observed. This occurs together with the loss of focal adhesions on the basal membrane. When endothelial cells are subjected to 24 hours' oscillating shear stress, the size of the cell increases as the oscillatory reversal time (time between changes in oscillatory flow direction) increases. Measurements are taken with oscillatory flow reversal programmed at 5s, 10s and 15s. The angle (between the long axis of the cell and the flow direction) and the aspect ratio (long axis vs short axis) change from 41.57° and 1.72 : 1 (static) to 40.18° and 3.26 : 1 (5s), 36.71° and 4.17 : 1 (10s), 26.5° and 4.39 : 1 (15s). Both the height and the area of the cell increase. The Young's modulus of the endothelial cell membrane is measured under oscillatory flows with different reversal time and compared to that under static flow conditions. An increase in the Young's modulus is observable under oscillatory flows, with the most significant change occurring at the edge (i.e. periphery) of the cell membrane area. As the oscillatory reversal time increases from 5s to 15s, the Young's modulus of the cell membrane increases. In the apical areas of the cell membrane, the increase is less significant. These results indicate that the thickness of the glycocalyx decreases as cells are exposed to oscillatory flows, and the loss is most significant in the peripheral region of the cell membrane. As the oscillatory reversal time increases from 5s to 15s, so the loss in the glycocalyx increases.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Engineering and Materials Science ; vascular endothelial cells ; endothelial glycocalyx ; Atomic Force Microscopy