Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.764913
Title: Segmentation and lesion detection in dermoscopic images
Author: Eltayef, Khalid Ahmad A.
ISNI:       0000 0004 7658 3687
Awarding Body: Brunel University London
Current Institution: Brunel University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Malignant melanoma is one of the most fatal forms of skin cancer. It has also become increasingly common, especially among white-skinned people exposed to the sun. Early detection of melanoma is essential to raise survival rates, since its detection at an early stage can be helpful and curable. Working out the dermoscopic clinical features (pigment network and lesion borders) of melanoma is a vital step for dermatologists, who require an accurate method of reaching the correct clinical diagnosis, and ensure the right area receives the correct treatment. These structures are considered one of the main keys that refer to melanoma or non-melanoma disease. However, determining these clinical features can be a time-consuming, subjective (even for trained clinicians) and challenging task for several reasons: lesions vary considerably in size and colour, low contrast between an affected area and the surrounding healthy skin, especially in early stages, and the presence of several elements such as hair, reflections, oils and air bubbles on almost all images. This thesis aims to provide an accurate, robust and reliable automated dermoscopy image analysis technique, to facilitate the early detection of malignant melanoma disease. In particular, four innovative methods are proposed for region segmentation and classification, including two for pigmented region segmentation, one for pigment network detection, and one for lesion classification. In terms of boundary delineation, four pre-processing operations, including Gabor filter, image sharpening, Sobel filter and image inpainting methods are integrated in the segmentation approach to delete unwanted objects (noise), and enhance the appearance of the lesion boundaries in the image. The lesion border segmentation is performed using two alternative approaches. The Fuzzy C-means and the Markov Random Field approaches detect the lesion boundary by repeating the labeling of pixels in all clusters, as a first method. Whereas, the Particle Swarm Optimization with the Markov Random Field method achieves greater accuracy for the same aim by combining them in the second method to perform a local search and reassign all image pixels to its cluster properly. With respect to the pigment network detection, the aforementioned pre-processing method is applied, in order to remove most of the hair while keeping the image information and increase the visibility of the pigment network structures. Therefore, a Gabor filter with connected component analysis are used to detect the pigment network lines, before several features are extracted and fed to the Artificial Neural Network as a classifier algorithm. In the lesion classification approach, the K-means is applied to the segmented lesion to separate it into homogeneous clusters, where important features are extracted; then, an Artificial Neural Network with Radial Basis Functions is trained by representative features to classify the given lesion as melanoma or not. The strong experimental results of the lesion border segmentation methods including Fuzzy C-means with Markov Random Field and the combination between the Particle Swarm Optimization and Markov Random Field, achieved an average accuracy of 94.00% , 94.74% respectively. Whereas, the lesion classification stage by using extracted features form pigment network structures and segmented lesions achieved an average accuracy of 90.1% , 95.97% respectively. The results for the entire experiment were obtained using a public database PH2 comprising 200 images. The results were then compared with existing methods in the literature, which have demonstrated that our proposed approach is accurate, robust, and efficient in the segmentation of the lesion boundary, in addition to its classification.
Supervisor: Li, Y. ; Liu, X. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.764913  DOI: Not available
Keywords: Image processing ; Segmentation ; Feature selection ; Region classification ; Image enhancement
Share: