Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.764178
Title: Fano threefolds and algebraic families of surfaces of Kodaira dimension zero
Author: Karzhemanov, Ilya
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The thesis consists of four chapters. First chapter is introductory. In Chapter 2, we recall some basic facts from the singularity theory of algebraic varieties (see Section 2.2) and the theory of minimal models (see Section 2.3), which will be used throughout the rest of the thesis. We also make some conventions on the notions and notation used in the thesis (see Section 2.1). Each Chapter 3 and 4 starts with some preliminary results (see Sections 3.1 and 4.1, respectively). Each Chapter 3 and 4 ends with some corollaries and conclusive remarks (see Sections 3.7 and 4.4, respectively). In Chapter 3, we prove Theorem 1.2.7, providing the complete description of Halphen pencils on a smooth projective quartic threefold X in P4. Let M be such a pencil. Firstly, we show that M ⊂ | − nKX | for some n ∈ N, and the pair (X,1n M) is canonical but not terminal. Further, if the set of not terminal centers CS(X, 1 ) (see Remark 2.2.8) does not contain points, we show that n = 1 (see Section 3.2). Finally, if there is a point P ∈ CS(X, n M), in Section 3.1 we show first that a general M ∈ M has multiplicity 2n at P (cf. Example 1.2.3). After that, analyzing the shape of the Hessian of the equation of X at the point P , we prove that n = 2 and M coincides with the exceptional Halphen pencil from Example 1.2.6 (see Sections 3.3-3.6). In Chapter 4, we prove Theorem 1.2.11, which shows, in particular, that a general smooth K3 surfaces of type R is an anticanonical section of the Fano threefold X with canonical Gorenstein singularities and genus 36. In Section 4.2, we prove that X is unique up to an isomorphism and has a unique singular point, providing the geometric quotient construction of the moduli space F in Section 4.3 (cf. Remark 1.2.12). Finally, in Section 4.3 we prove that the forgetful map F −→ KR is generically surjective.
Supervisor: Cheltsov, Ivan ; Gordon, Iain Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.764178  DOI: Not available
Keywords: singularity theory of algebraic varieties
Share: