Use this URL to cite or link to this record in EThOS:
Title: Parabolic boundary value problems with rough coefficients
Author: Dyer, Luke Oliver
ISNI:       0000 0004 7654 8996
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis is motivated by some of the recent results of the solvability of elliptic PDE in Lipschitz domains and the relationships between the solvability of different boundary value problems. The parabolic setting has received less attention, in part due to the time irreversibility of the equation and difficulties in defining the appropriate analogous time-varying domain. Here we study the solvability of boundary value problems for second order linear parabolic PDE in time-varying domains, prove two main results and clarify the literature on time-varying domains. The first result shows a relationship between the regularity and Dirichlet boundary value problems for parabolic equations of the form Lu = div(A∇u)−ut = 0 in Lip(1, 1/2) time-varying cylinders, where the coefficient matrix A = [aij(X, t)] is uniformly elliptic and bounded. We show that if the Regularity problem (R)p for the equation Lu = 0 is solvable for some 1 < p < then the Dirichlet problem (D*) 1 p, for the adjoint equation L*v = 0 is also solvable, where p' = p/(p − 1). This result is analogous to the one established in the elliptic case. In the second result we prove the solvability of the parabolic Lp Dirichlet boundary value problem for 1 < p ≤ ∞ for a PDE of the form ut = div(A∇u)+B ·∇u on time-varying domains where the coefficients A = [aij(X, t)] and B = [bi(X, t)] satisfy a small Carleson condition. This result brings the state of affairs in the parabolic setting up to the current elliptic standard. Furthermore, we establish that if the coefficients of the operator A and B satisfy a vanishing Carleson condition, and the time-varying domain is of VMO-type then the parabolic Lp Dirichlet boundary value problem is solvable for all 1 < p ≤ ∞. This is related to elliptic results where the normal of the boundary of the domain is in VMO or near VMO implies the invertibility of certain boundary operators in Lp for all 1 < p < ∞. This then (using the method of layer potentials) implies solvability of the Lp boundary value problem in the same range for certain elliptic PDE. We do not use the method of layer potentials, since the coefficients we consider are too rough to use this technique but remarkably we recover Lp solvability in the full range of p's as the elliptic case. Moreover, to achieve this result we give new equivalent and localisable definitions of the appropriate time-varying domains.
Supervisor: Dindos, Martin ; Breit, Dominic Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: elliptic PDE ; Lipschitz domains ; parabolic setting ; boundary value problems ; Dirichlet boundary value problems ; parabolic boundary value