Use this URL to cite or link to this record in EThOS:
Title: 'SynCheck' : new tools for dissecting Bub1 checkpoint functions
Author: Leontiou, Ioanna
ISNI:       0000 0004 7654 7002
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The accurate segregation of DNA during cell division is essential for the viability of future cellular generations. Genetic material is packaged in the form of chromosomes during cell division, and chromosomes are segregated equally into two daughter cells. Chromosome mis-distribution leads to genetic disorders (e.g. Down's syndrome), aneuploidy and cancer. The spindle checkpoint ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. Upon checkpoint activation, unattached kinetochores recruit checkpoint proteins that combine to form a diffusible inhibitor (the Mitotic Checkpoint Complex-MCC). The MCC delays anaphase, thus giving cells time to fix attachment errors. Although the major checkpoint proteins were identified several years ago, we have only just begun to understand how they assemble at unattached kinetochores to generate the checkpoint signal. Yeast genetics and proteomics have revealed that kinetochores are highly complex molecular machines with almost 50 kinetochore components and ~10 components of the spindle checkpoint machinery. Such complexity makes the separation of error correction, kinetochore bi-orientation and microtubule attachment functions very challenging. To circumvent this complexity, a synthetic version of the spindle checkpoint (SynCheck), based on tetO array was engineered at an ectopic location on a chromosome arm away from kinetochores in S. pombe. This work describes that combined targeting, initially of KNL1Spc7 with Mps1Mph1 and later of Bub1 (but not Mad1) with Mps1Mph1 fragments, was able to activate the spindle checkpoint and generate a robust arrest. The system is based on, soluble complexes, which were formed between KNL1Spc7 or Bub1 with Mps1Mph1. The synthetic checkpoint or 'Syncheck' is independent of localisation of the checkpoint components to the kinetochores, to spindle pole bodies (SPBs) and to nuclear pores. By using the synthetic tethering system a Mad1-Bub1 complex was identified for the first time in S.pombe. Bub1- Mad1 complex formation is crucial for checkpoint activation. Bub1-Mad1 gets phosphorylated itself and is thought to act as an assembly platform for MCC production and thereby generation of the "wait anaphase" signal. The ectopic tetO array is an important tool, not only for generating MCC formation and activating the spindle checkpoint, but also for providing a nice system for analysing in vivo protein-protein interactions. The ectopic array is capable of not only recruiting checkpoint components, but also recruiting them in a physiological manner (similar to the unattached kinetochores). For this reason it was decided to adopt this system to examine the role of the conserved Bub1TPR domain in the recruitment of other spindle checkpoint proteins. This work represents two novel functions for the S. pombe Bub1TPR domain. For the first time in S. pombe, both in vivo tethering and in vitro experiments with purified, recombinant proteins showed that the Bub1 has the ability to homodimerise and to form a complex with Mad3BubR1 through its TPR domain. These results revealed that complex formation of Bub1 with Mad3BubR1 is important for checkpoint signalling and that the highly conserved TPR domains in BubR1Mad3 and Bub1 have key roles to play in their interactions.
Supervisor: Hardwick, Kevin ; Welburn, Julie Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: mitotic spindle checkpoint ; yeast ; Bub1 ; kinetochores ; SynCheck