Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.764056
Title: Variable capture levels of carbon dioxide from natural gas combined cycle power plant with integrated post-combustion capture in low carbon electricity markets
Author: Errey, Olivia Claire
ISNI:       0000 0004 7654 6878
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This work considers the value of flexible power provision from natural gas-fired combined cycle (NGCC) power plants operating post-combustion carbon dioxide (CO2) capture in low carbon electricity markets. Specifically, the work assesses the value of the flexibility gained by varying CO2 capture levels, thus the specific energy penalty of capture and the resultant power plant net electricity export. The potential value of this flexible operation is quantified under different electricity market scenarios, given the corresponding variations in electricity export and CO2 emissions. A quantified assessment of natural gas-fired power plant integrated with amine-based post-combustion capture and compression is attempted through the development of an Aspen Plus simulation. To enable evaluation of flexible operation, the simulation was developed with the facility to model off-design behaviour in the steam cycle, amine capture unit and CO2 compression train. The simulation is ultimately used to determine relationships between CO2 capture level and the total specific electricity output penalty (EOP) of capture for different plant configurations. Based on this relationship, a novel methodology for maximising net plant income by optimising the operating capture level is proposed and evaluated. This methodology provides an optimisation approach for power plant operators given electricity market stimuli, namely electricity prices, fuel prices, and carbon reduction incentives. The techno-economic implications of capture level optimisation are considered in three different low carbon electricity market case studies; 1) a CO2 price operating in parallel to wholesale electricity selling prices, 2) a proportional subsidy for low carbon electricity considered to be the fraction of plant electrical output equal to the capture level, and 3) a subsidy for low carbon electricity based upon a counterfactual for net plant CO2 emissions (similar to typical approaches for implementing an Emissions Performance Standard). The incentives for variable capture levels are assessed in each market study, with the value of optimum capture level operation quantified for both plant operators and to the wider electricity market. All market case studies indicate that variable capture is likely to increase plant revenue throughout the range of market prices considered. Different market approaches, however, lead to different valuation of flexible power provision and therefore different operating outcomes.
Supervisor: Chalmers, Hannah ; Lucquiaud, Mathieu Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.764056  DOI: Not available
Keywords: power plant operation ; CO2 capture ; CO2 capture level ; operating flexibility
Share: