Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.764015
Title: Studying the synaptome : insights into ketamine action
Author: Lemprière, Sarah Alice
ISNI:       0000 0004 7654 5306
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Major depressive disorder (MDD) is a growing health problem. Current treatment options are not always effective and take several weeks of regular administration before an improvement can be seen in symptoms. Sub-anaesthetic doses of ketamine have been found to have antidepressant effects in previously treatment-resistant MDD after just one dose. However, ketamine also produces short term psychosis-like side effects which are undesirable for MDD patients. Ketamine is known to be an NMDA receptor antagonist, binding within the channel pore to block ion flow, however the molecular mechanism(s) underlying its antidepressant and psychosis-like effects are still unclear. In this thesis several genetically modified mouse lines were used to probe the molecular events involved in ketamine's actions. Firstly, a mouse line in which the c-terminal domain (CTD) of the NMDAR subtype GluN2B had been replaced with that of GluN2A, and a second line in which the opposite replacement had taken place, were used to investigate the role of the CTD in the NMDAR response to ketamine. It was found that the GluN2B CTD is required for the short-term psychosis-like response to a sub-anaesthetic dose of ketamine. This is interesting as the channel pore region, containing the binding site for ketamine, is unaltered in these mutants. Therefore, this finding implicates GluN2B CTD specific intracellular signalling molecules in this action of ketamine and raises the question of whether the CTD itself is able to respond to ketamine binding within the pore to induce signalling changes, perhaps via a conformational change. Secondly, a mouse line, in which the activity-regulated synaptic protein Arc has been tagged with a fluorescent marker, was used to investigate the response of synapses to both anaesthetic and sub-anaesthetic doses of ketamine. In this experiment tagged Arc protein was visible as punctate accumulations at synapses. A novel method termed 'synaptome mapping' was used to image these accumulations across entire coronal sections and to quantify their number, size and intensity. Using this method alterations to the Arc synaptome map were detected 1h, 6h and 24h following ketamine administration. The two doses used produced different changes to this map, with the sub-anaesthetic antidepressant dose inducing increases in Arc puncta number across many brain regions, whereas the anaesthetic dose induced short term (1h) increases followed by longer term decreases in Arc puncta number. This finding links long-term increases in Arc at the synapse with an antidepressant response to ketamine.
Supervisor: Grant, Seth ; Komiyama, Noboru Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.764015  DOI: Not available
Keywords: ketamine ; Arc ; NMDA receptors ; antidepressant responses ; psychosis-like effects
Share: