Use this URL to cite or link to this record in EThOS:
Title: Structural and mechanistic studies of the pyridoxal 5'-phosphate-dependent enzyme serine palmitoyltransferase
Author: Mykhaylyk, Bohdan
ISNI:       0000 0004 7654 5293
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Sphingolipids (SLs) are complex lipid-derived structures that are essential components of cell membranes in eukaryotes and some bacteria. SLs and their complex derivatives ceramides are known to be involved in multiple processes such as the formation of lipid rafts, cell signalling and membrane trafficking. The first step of SL biosynthesis is universal to all sphingolipid-producing organisms from bacteria to humans and is catalysed by the enzyme serine palmitoyltransferase (SPT). SPT is a member of the alpha-oxoamine synthase (AOS) family of pyridoxal- 5'-phosphate-dependent enzymes. All AOS family enzymes retain a high degree of structural homology and catalyse the decarboxylative Claisen-like condensation of amino acids with thioester substrates. The SPT enzyme catalyses the formation of the universal SL precursor, 3-ketodihydrosphingosine (KDS), by condensation of L-serine and coenzyme A-derived palmitic acid. Being the key controller in SL biosynthesis, SPT plays a big role in regulating natural and pathological processes. A lot of research interest has been recently generated by SLs isolated from bacterial members of the human microbiome and their roles in human health. Increasing evidence suggests that some of these SLs possess immunoregulatory effects and can have a direct impact on the immunity of the host. Bacteroides fragilis is a commensal gut-dwelling bacterium that belongs to a few human microbionts known to produce unique iso-branched sphingolipids (isoSLs); these have been shown to influence the human iNKT cell count. The production of SLs in B.fragilis is completely regulated by a gene product BF2461. In this work, BF2461 was expressed and purified; using a combination of UV-vis spectrometry, enzymatic assays, mass spectrometry and protein X-ray crystallography, it has been confirmed to be an SPT. The substrate specificity of the BfSPT has been assessed with a range of different chain-length substrates, including less common 15 and 17-carbon chain length coenzyme A substrates. The enzyme can produce different types of SL precursors with a preference for the 16-carbon chain substrate palmitoyl- CoA. However, at high levels of PCoA, a substrate inhibition is observed that might point to a natural control mechanism employed by the bacterium in favour of producing iso-branched SLs (isoSLs). The structure of BfSPT has been elucidated in a complex with its amino acid substrate L-serine. Search and analysis of putative SPTs from other microbiome-associated bacteria that produce isoSLs show that they share high similarity with an average amino acid conservation of 74%, suggesting they might be adapted to a particular type of substrate. In this respect, BfSPT might be the first isoSL-producing SPT to be structurally characterised, and the first one to have a direct impact on human health. Further structural data were obtained on protein complexes with L-cycloserine and L-penicillamine, some common inhibitors of the PLP-dependent enzymes. The structure obtained in the presence of L-penicillamine provides the first direct structural evidence of the inhibitory mechanism by a thiazolidine complex formation in the active site of a PLP-dependent enzyme. These findings shed light on certain aspects of the reaction and inhibition mechanisms of BfSPT as well as opening new prospects into researching this interesting target and its impact on the human microbiome.
Supervisor: Campopiano, Dominic ; Mowat, Christopher Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Sphingolipids ; SPT ; serine palmitoyltransferase ; Bacteroides fragilis ; human microbiome ; PLP-dependent enzymes ; pyridoxal phosphate