Use this URL to cite or link to this record in EThOS:
Title: Optical studies of diatomic molecules at extreme conditions
Author: Afonina, Veronika Semenovna
ISNI:       0000 0004 7654 1727
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The formidable progress achieved in the research at extreme conditions led to important discoveries of many unusual and interesting physical and chemical phenomena. Materials with high compressibility were and still are of particular interest due to a significant reduction of volume which could result in unexpected changes of bonding and/or electronic properties. Among highly compressible materials simple diatomic molecules such as H2, N2, and O2 are particularly interesting because they form new types of solids at high pressure. Hydrogen, being the most abundant element in the universe, possesses simple electronic structure, therefore, the study of hydrogen systems is of special interest. In the last three decades, there were subsequently explored and described several high-pressure phases of hydrogen up to 400 GPa. However, there is still a vast area of unexplained effects, which requires further analysis. The contributed work discusses Raman experiments in a wide pressure and temperature range where rotational and lattice phonon excitations have been measured in the Raman spectrum of solid H2 and D2 at 10, 77, 150 and 300 K from 2 to 180 GPa and up to 380 GPa at 300 K. Analysis of the Raman spectra allows to model how the rotational modes change with pressure and temperature and how the mass scaling laws evolve as the density increases in both hydrogen and deuterium. Comparison of vibrational frequencies of the isotopes appears to be extremely useful for estimation of equivalent pressures for both isotopes. Nitrogen and oxygen are archetypal elements possessing unique features such as extremely strong triple bond in case of N2 and magnetic moment in O2 . Both N2 and O2 exhibit rich polymorphism, with additional phases of O2 derived from its electronic and magnetic properties. N2 /O2 mixtures (for example, 20.9% O2 and 78% N2 mixture is air that we breathe) have been studied up to 12 GPa at 300 K experimentally and explored up to 500 GPa at 0 K theoretically. In the current project, N2 /O2 molecular systems are examined at 300 K up to 150 GPa. Rich polymorphism is observed, with seven phases exhibiting drastically different Raman spectra for concentrations below 45% of O2 and a more stable area with three phases in the concentration range from 45% to 80% of oxygen at pressures above 12 GPa. Moreover, characteristic Raman spectra obtained for the mix with 25% O2 after laser heating to approximately 2000 K at 25 and 96 GPa reveals pronounced peaks indicating the potential formation of new compounds.
Supervisor: Gregoryanz, Eugene ; Ackland, Graeme Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: diatomic molecules ; extreme pressure ; extreme temperatures ; Raman experiments