Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763947
Title: Investigating RNA silencing-mediated epigenetic modifications in virus-infected plants
Author: Fei, Yue
ISNI:       0000 0004 7654 1356
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Plant viruses can cause many plant diseases, which result in substantial damage to crop production. To overcome viral infections, plants evolved RNA silencing which can recognise viral RNAs during their replications and slice them into small RNA (sRNA) using antiviral nucleases called DICER or Dicer-like (DCL). The resulting virus-derived small interfering RNA (vsiRNA, 21-24 nucleotides) then guides effector nucleases, namely ARGONAUTE (AGO), to cleave viral RNAs in the cytoplasm in a nucleotide-specific manner. However, the activity of vsiRNA is not restricted to the control of viral RNA accumulation. Virus-derived sRNAs can regulate host gene expression if host mRNAs share sequence complementarity with vsiRNAs. Interestingly, vsiRNAs are also able to target and methylate homologous DNA sequences in the nucleus indicating that vsiRNAs have potential to regulate endogenous genes at transcriptional level by modifying the epigenetic status of gene promoter sequences. This mechanism is referred to as transcriptional gene silencing (TGS). Thus, RNA silencing opens up new strategies to stably and heritably alter gene expression in plants. However, the mechanisms and efficacy of plant virus-induced TGS are largely unknown. The aim of my PhD was to investigate the molecular and environmental factors that are involved in virus-induced epigenetic modifications in the infected plants and in their progeny. First, I examined the required sequence complementary between sRNAs and their nuclear target sequence. I demonstrated for the first time that nuclear-imported vsiRNAs can induce RNA-directed DNA methylation (RdDM) and subsequently heritable virus-induced transcriptional gene silencing (ViTGS) even when they do not share 100% nucleotide sequence complementarity with the target DNA. This finding reveals a more dynamic interaction between viral RNAs and the host epigenome than previously thought. Secondly, I explored how environmental stimuli such as light and temperature can affect the efficacy of ViTGS. I found that ViTGS is greatly inhibited at high temperature. Using RNA-seq, I established that inefficient ViTGS at high temperature is due to the limited production of secondary sRNAs that may limit the initiation, amplification and spreading of virus-induced DNA methylation to neighbouring cells and down generations. Lastly, I studied the link between the viral suppressors of RNA silencing (VSRs): viral proteins that can interfere with plant RNA silencing and ViTGS. I established that VSRs of certain viruses can impair TGS in infected tissues, suggesting that viruses may alter the epigenome and consequently plant gene expression in the infected plants and their progeny. Collectively, my work reveals how viruses can re-program the epigenome of infected plants, and deepens our knowledge of how we can harness pathogens to modify the epigenome for plant breeding.
Supervisor: Molnar, Attila ; Bayne, Elizabeth Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.763947  DOI: Not available
Keywords: plant viruses ; RNA silencing ; epigenetics
Share: