Use this URL to cite or link to this record in EThOS:
Title: D14-LIKE : an essential protein for the establishment of arbuscular mycorrhizal symbiosis
Author: Summers, William
ISNI:       0000 0004 7653 9520
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 22 Jan 2025
Access from Institution:
Low nutrition availability in the soil can be a major limitation of plant growth. To improve nutrient acquisition, the majority of land plants engage in symbiosis with arbuscular mycorrhizal (AM) fungi. The accommodation of fungal colonisation structures in the roots requires their radical reprogramming. This starts during pre-symbiotic communication, where signals are exchanged between the fungus and plant across the rhizosphere. The receptor D14-LIKE emerged as a vital component of this pre-symbiotic communication when it was found to be absolutely required for symbiosis in rice. However, the broader relevance of the receptor, both in terms of functional conservation across plant species and its relation to other pre-symbiotic plant signalling components, remained unclear. The aim of this thesis was to elucidate these two key points. To address the fragmented picture of fungal signals, plant receptors and signalling pathways, a large scale transcriptomic experiment in rice was conducted to tie D14L together with other distinct pre-symbiotic components. In the absence of D14L-mediated signalling, rice was found to be compromised in the perception of germinated spore exudates, as well as specific chitinaceous signals, meaning that normal transcriptional reprogramming could not be achieved in response to any of these treatments. In addition, the functional conservation of D14L signalling was explored using trans-species complementation experiments. It was found that the Arabidopsis homolog AtKAI2 could complement the developmental phenotype of the d14l rice mutant, but not symbiosis. Likewise, D14La from early diverging Marchantia polymorpha and Marachantia paleacea could rescue developmental phenotypes in d14l rice, but again failed to complement symbiosis. This demonstrated a functional separation between developmental and symbiotic signalling. The data generated during my PhD foster D14L as a central node for multiple inputs to pre-symbiotic reprogramming, and provides new insights into pre-symbiotic communication mechanisms which are required for the successful establishment of symbiosis.
Supervisor: Paszkowski, Uta Sponsor: BBSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: Plant biology ; Symbiosis ; Arbuscular mycorrhizae ; Genetics ; Plant-microbe interactions ; Molecular biology ; Rice