Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763821
Title: Spin-sensitive probes of triplet excitons in organic semiconductors
Author: Weiss, Leah Rachel
ISNI:       0000 0004 7653 3452
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2019
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Jan 2400
Access from Institution:
Abstract:
Spin interactions play a key role in the function of molecular materials from naturally occurring biological complexes to synthetic materials for light-harvesting and light-emission. This thesis investigates the spin interactions of spin-1 triplet excitons formed by singlet fission. Singlet fission produces two triplet excitons from one light-induced singlet state and holds promise to enable solar energy generation beyond traditional efficiency limits. As the lifetime of triplet pairs depends sensitively on their spin degree of freedom, in this thesis we deploy spin-sensitive techniques to understand the interactions and evolution of triplet pairs. After introducing the relevant theoretical and experimental background underlying singlet fission and the role of spin, we describe the first observation of strongly exchange coupled, high-spin triplet-pair states ($S=2$) in a solid-state organic semiconductor and show that the singlet fission process allows for the formation of long-lived, strongly coupled spin-two states. We then describe the development and use of photoluminescence-detected avoided level-crossings in applied magnetic fields to quantify the strength of exchange coupling and identify specific optical signatures of exchange-coupled triplet pairs. Using high magnetic fields ($\leq\mbox{60 T}$) we isolate and measure the exchange coupling and optical signatures of multiple distinct triplet pairs in the same material. Finally, we probe the mechanisms of formation and decay of spin polarization from triplet pair states using pulsed spin resonance. The measured dynamics are consistent with polarization driven by fluctuations in exchange coupling between pairs and spin-orbit mediated decay of triplet excitons to the ground state. The combined measurements of the spin parameters and polarization dynamics of triplet pairs from ns to ms timescales provides a quantitative picture of the spin states generated by singlet fission.
Supervisor: Friend, Richard Henry Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.763821  DOI:
Keywords: Optoelectronics ; Electron Spin Resonance ; Magnetic Field Effects ; Singlet Fission ; Photophysics
Share: