Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763610
Title: V-ATPase regulation of Hypoxia Inducible transcription Factors
Author: Miles, Anna Louise
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Metazoans have evolved conserved mechanisms to promote cell survival under low oxygen tensions by initiating a transcriptional cascade centered on the action of Hypoxia Inducible transcription Factors (HIFs). In aerobic conditions, HIFs are inactivated by ubiquitin-proteasome-mediated degradation of their a subunit, which is dependent on prolyl hydroxylation by 2-oxoglutarate (2-OG) and Fe(II)-dependent prolyl hydroxylases (PHDs). In hypoxia, HIF-$\alpha$ is no longer hydroxylated and is therefore stabilised, activating a global transcriptional response to ensure cell survival. Interestingly, HIFs can also be activated in aerobic conditions, however the mechanisms of this oxygen-independent regulation are poorly understood. Here, I have explored the role of the vacuolar H+-ATPase (V-ATPase), the major proton pump for acidifying intracellular vesicles and facilitating lysosomal degradation, in regulating HIF-$\alpha$ turnover. Unbiased forward genetic screens in near-haploid human cells identified that disruption of the V-ATPase leads to activation of HIFs in aerobic conditions. Rather than preventing the lysosomal degradation of HIF-$\alpha$, I found that V-ATPase inhibition indirectly affects the canonical proteasome-mediated degradation of HIF-$\alpha$ isoforms by altering the intracellular iron pool and preventing HIF-$\alpha$ prolyl hydroxylation. In parallel, I characterised two putative mammalian V-ATPase assembly proteins, TMEM199 and CCDC115, identified by the forward genetic screen and subsequent mass spectrometry analysis. I confirmed that both TMEM199 and CCDC115 are required for V-ATPase function, and established assays to determine how TMEM199 and CCDC115 associate with components of the core V-ATPase complex. Lastly, to measure how V-ATPase activity leads to changes in the labile iron pool, I developed an endogenous iron reporter using CRISPR-Cas9 knock-in technology. This approach confirmed that iron homeostasis is impaired during V-ATPase inhibition, and demonstrated that exogenous ferric iron can restore the labile iron pool in a transferrin-independent manner. Together my studies highlight a crucial link between V-ATPase activity, iron homeostasis, and the hypoxic response pathway.
Supervisor: Nathan, James Sponsor: Medical Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.763610  DOI:
Keywords: CCDC115 ; HIF ; Iron ; PHD ; TMEM199 ; Vacuolar ATPase ; Vma12p ; Vma22p ; Ferritinophagy ; Prolyl hydroxylation ; Transferrin ; Transferrin receptor ; Lysosomes ; Acidification ; Hypoxia Inducible Factors ; V-ATPase ; Proteasome ; Hypoxic response pathway ; Endo-lysosomal degradation ; IRP2 ; IRE
Share: