Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763476
Title: The improvement of vehicle noise variability through the understanding of phase angle and NVH analysis methods
Author: Dowsett, Amy
ISNI:       0000 0004 7651 4032
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Noise, vibration and harshness (NVH)levels in the luxury automotive industry are used by customers as a subjective method of determining the vehicle quality. This can be achieved by adjusting the vehicle design, where simulations are used to predict the NVH behaviour. Changes can be expensive and time consuming when made after the design stage has been completed, so it is important to produce accurate simulations of the product. Variability exists to some extent in all products, even those just off the production line, however, if a high level of variability exists then only a small portion of products will meet the predicted behaviour. The aim of the project is to provide information that may lead to the reduction of variability in an automotive vehicle. This is achieved by quantifying the statistical spread of FRFs (frequency response function) in a set of nominally identical vehicles. Once overall levels have been calculated, the location of the most variable sources can be identified. Project also seeks to develop new methods of analysis for the system phase response to determine whether further information may be extracted compared to the magnitude response. There are three main themes that run throughout this thesis, with the first being the quantification of variability due to the measurement taking process which is covered in chapter 3. A novel application of a method to separate the measurement variability from the overall system uncertainty was achieved as well as the quantification of the vehicle to- vehicle variability. The second theme that runs through the study concerns the identification of variability sources. This is realised in chapter 4 and chapter 6 as a set of structural and acoustic tests on a luxury sedan door. The trim was found to be held to the door panel by a series of 11 polymer clips and 4 metal screws. The variability of small changes to a significant boundary condition at the door trim was quantified, showing that the removal of rigid clips had a more significant effect on the overall variability that if a loose clip has been removed. It was also found that clips at the corners were the most sensitive to change. The final theme outlines and tests new analysis methods on the phase and compares the statistical spread of the phase with the equivalent spread of the magnitude. Data taken from the same tests was used and for most of the cases the two results were found to be approximately the same.
Supervisor: Not available Sponsor: ESRC ; JLR
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.763476  DOI: Not available
Keywords: NVH ; FRF ; Variability ; Phase unwrapping ; Measurement uncertainty ; Coherence
Share: