Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763337
Title: Detecting and tracking early neurodegeneration in familial Alzheimer's disease
Author: Weston, Philip S. J.
ISNI:       0000 0004 7661 296X
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Alzheimer's disease (AD) is recognized to have a long presymptomatic period, with initial deposition of extracellular amyloid and intracellular tau, followed by downstream neurodegeneration and cognitive decline. There is great interest in testing potential disease-modifying treatments for AD prior to the onset of symptoms, when minimal neuronal loss has occurred. To facilitate this, robust and sensitive methods are needed to identify at-risk individuals, stage their disease, and track progression. Familial Alzheimer's disease (FAD) shares many features, clinically, radiologically, and neurophysiologically, with the more common sporadic form of disease. Carriers of autosomal dominantly inherited mutations in the presenilin 1, presenilin 2, and amyloid precursor protein genes have relatively predictable ages at symptom onset, based on family history. Study of FAD mutation carriers therefore provides the opportunity for the prospective study of asymptomatic individuals with known underlying AD pathology prior to the onset of clinical disease. The studies presented herein aim to improve the identification and characterization of early FAD neurodegenerative change and its earliest downstream cognitive effects. A multimodal approach is taken, with both presymptomatic and mildly symptomatic individuals included. Chapter one provides an introduction to AD and methods for measuring early neurodegeneration. Chapter two then outlines the general methodological approach across the different studies. Chapters three and four present results of magnetic resonance imaging studies of macrostructural (cortical thickness) and microstructural (diffusion-weighted imaging) cortical change. Chapter five reports results for a new blood-based biomarker of neurodegeneration - serum neurofilamentlight. Chapter six investigates a novel approach to presymptomatic cognitive testing - 6 assessing accelerated long-term forgetting. In all studies, significant differences between mutation carriers and non-carrier controls are detectable during the presymptomatic period. The thesis draws together these different approaches and discusses how they advance our understanding of the neurobiology of AD and their potential utility in both clinical assessment and presymptomatic therapeutic trials.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.763337  DOI: Not available
Share: