Use this URL to cite or link to this record in EThOS:
Title: Modelling charge transport in organic semiconducting materials
Author: Yang, Hui
ISNI:       0000 0004 7661 2572
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Forming the active layers of organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs) and organic field-effect transistors (OFETs), Organic semiconductors (OSs) have revolutionized the microelectronics industry. Compared with commonly used inorganic semiconductors, OSs combine many desirable properties: light-weight, flexible and relatively easy to produce from renewable resources. However, a drawback of OSs compared to inorganic semiconductors is their limited conductivity of electrical charges. In this thesis, I study charge transport properties of OSs in order to aid their material and structure design and to improve device efficiency. In this work, I evaluate the performance of a systematic and sophisticated computational tool for the prediction of charge mobilities in OSs. The method is based on the assumption that the charge carrier is localized, i.e. forms a small polaron that hops from one molecule to the next. Molecular dynamics simulation and first- principle calculations are used to calculate rate constants for each polaron hopping step and kinetic Monte Carlo simulations are carried out to compute the mobility from the set of hopping rate constants. The methodology is applied to hole hopping in single crystalline benzene, rubrene, pentacene, anthracene and electron hopping in C60. To find structure - property relations linking the morphology with the bulk charge carrier mobility, the methodology is further applied in few-layer thinfilm pentacene and amorphous pentacene.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available