Use this URL to cite or link to this record in EThOS:
Title: PP2A-B56 isoform specificity at the centromere and kinetochore
Author: Vallardi, Giulia
ISNI:       0000 0004 7659 7093
Awarding Body: University of Dundee
Current Institution: University of Dundee
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 30 Jun 2024
Access from Institution:
At least three major mitotic processes are regulated by the PP2A-B56 phosphatase complex: the Spindle Assembly Checkpoint (SAC), kinetochore-microtubule attachments and sister chromatid cohesion. We show here that these key functions of PP2A-B56, which require its localization to either the kinetochore or centromere, are split between distinct subsets of B56 isoforms. PP2A-B56γ and PP2A-B56δ localize to the outer kinetochore (via BUBR1), whereas PP2A-B56α and PP2A-B56ε localize to the centromere (via Sgo2). The differential localization observed is due to a difference in affinity for the receptors: PP2A-B56γ has a reduced affinity for Sgo2 compared to PP2A-B56α and, vice versa, PP2A-B56α has a reduced affinity for BUBR1 compared to PP2A-B56γ. Given that the known binding interfaces for both BUBR1 and Sgo2 are highly conserved in all B56 isoform, we generated a series of chimeras between B56α and B56γ to uncover isoform specific interactions. This led to the identifications of two distinct regions within B56α and B56γ that regulate the binding to Sgo2 and BUBR1. Furthermore, site directed mutagenesis has revealed that proper holoenzyme assembly has a role in regulating the localization of B56: it is needed for centromeric accumulation and it interferes with kinetochore accumulation of B56α. We will present a model to explain how this differential localization could be linked to post-translational modifications of PP2AC. Together, these results help to clarify how individual PP2A-B56 isoforms achieve subcellular specificity during mitosis.
Supervisor: Saurin, Adrian Sponsor: Tenovus Scotland
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: mitosis ; phosphatases ; PP2A ; B56