Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.762871
Title: Berth scheduling at seaports : meta-heuristics and simulation
Author: Wang, R.
ISNI:       0000 0004 7659 2014
Awarding Body: Liverpool John Moores University
Current Institution: Liverpool John Moores University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This research aims to develop realistic solutions to enhance the efficiency of port operations. By conducting a comprehensive literature review on logistic problems at seaports, some important gaps have been identified for the first time. The following contributions are made in order to close some of the existing gaps. Firstly, this thesis identifies important realistic features which have not been well-studied in current academic research of berth planning. This thesis then aims to solve a discrete dynamic Berth allocation problem (BAP) while taking tidal constraints into account. As an important feature when dealing with realistic scheduling, changing tides have not been well-considered in BAPs. To the best of our knowledge, there is no existing work using meta-heuristics to tackle the BAP with multiple tides that can provide feasible solutions for all the test cases. We propose one single-point meta-heuristic and one population-based meta-heuristic. With our algorithms, we meet the following goals: (i) to minimise the cost of all vessels while staying in the port, and (ii) to schedule available berths for the arriving vessels taking into account a multi-tidal planning horizon. Comprehensive experiments are conducted in order to analyse the strengths and weaknesses of the algorithms and compare with both exact and approximate methods. Furthermore, lacking tools for examining existing algorithms for different optimisation problems and simulating real-world scenarios is identified as another gap in this study. This thesis develops a discrete-event simulation framework. The framework is able to generate test cases for different problems and provide visualisations. With this framework, contributions include assessing the performance of different algorithms for optimisation problems and benchmarking optimisation problems.
Supervisor: Nguyen, T. T. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.762871  DOI:
Keywords: HD28 Management. Industrial Management ; HE Transportation and Communications ; TC Hydraulic engineering. Ocean engineering
Share: