Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.762177
Title: Integrated modelling framework for the analysis of demand side management strategies in urban energy systems
Author: Bustos Turu, Gonzalo
ISNI:       0000 0004 7655 646X
Awarding Body: University of London
Current Institution: Imperial College London
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Influenced by environmental concerns and rapid urbanisation, cities are changing the way they historically have produced, distributed and consumed energy. In the next decades, cities will have to increasingly adapt their energy infrastructure if new low carbon and smart technologies are to be effectively integrated. In this context, advanced planning tools can become crucial to successfully design these future urban energy systems. However, it is not only important to analyse how urban energy infrastructure will look like in the future, but also how they will be operated. Advanced energy management strategies can increase the operational efficiency, therefore reducing energy consumption, CO2 emissions, operational costs and network investments. However, the design and analysis of these energy management strategies are difficult to perform at an urban scale considering the spatial and temporal resolution and the diversity in users energy requirements. This thesis proposes a novel integrated modelling framework to analyse flexible transport and heating energy demand and assess different demand-side management strategies in urban energy systems. With a combination of agent-based simulation and multi-objective optimisation models, this framework is tested using two case studies. The first one focuses on transport electrification and the integration of electric vehicles through smart charging strategies in an urban area in London, UK. The results of this analysis show that final consumer costs and carbon emissions reductions (compared to a base case) are in the range of 4.3-45.0% and 2.8-3.9% respectively in a daily basis, depending on the type of tariff and electricity generation mix considered. These reductions consider a control strategy where the peak demand is constrained so the capacity of the system is not affected. In the second case study, focused on heat electrification, the coordination of a group of heat pumps is analysed, using different scheduling strategies. In this case, final consumer costs and carbon emissions can be reduced in the range of 4-41% and 0.02-0.7% respectively on a daily basis. In this case, peak demand can be reduced in the range of 51-62% with respect to the baseline. These case studies highlight the importance of the spatial and temporal characterisation of the energy demand, and the level of flexibility users can provide to the system when considering a heterogeneous set of users with different technologies, energy requirements and behaviours. In both studies, trade-offs between the environmental and economic performance of demand-side management strategies are assessed using a multi-objective optimisation approach. Finally, further applications of the integrated modelling framework are described to highlight its potential as a decision-making support tool in sustainable and smart urban energy systems.
Supervisor: Shah, Nilay Sponsor: Comision Nacional de Investigación Científica y Tecnologica (Chile)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.762177  DOI:
Share: