Use this URL to cite or link to this record in EThOS:
Title: Homological invariants of strongly invertible knots
Author: Snape, Michael
ISNI:       0000 0004 7654 467X
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis explores the relationship between Khovanov homology and strongly invertible knots through the use of a geometric construction due to Sakuma. On the one hand, new homological and polynomial invariants of strongly invertible knots are extracted from Sakuma's construction, all of which are related to Khovanov homology. Conversely, these invariants are used to study the two-component links and annular knots obtained from Sakuma's construction, the latter of which are almost entirely disjoint from the class of braid closures. Applications include the problem of unknot detection in the strongly invertible setting, the efficiency of an invariant when compared with the η-polynomial of Kojima and Yamasaki, and the use of polynomial invariants to bound the size of the intrinsic symmetry group of a two-component Sakuma link. We also define a new quantity, κA, and conjecture that it is an invariant of strongly invertible knots.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA Mathematics