Use this URL to cite or link to this record in EThOS:
Title: Reconfigurable three-terminal logic devices using phase-change materials
Author: Al-Shahrablee, Ammar Adel Hasah
ISNI:       0000 0004 7653 7736
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Conventional solid-state and mass storage memories (such as SRAM, DRAM and the hard disk drive HDD) are facing many technological challenges to meet the ever-increasing demand for fast, low power and cheap data storage solutions. This is compounded by the current conventional computer architectures (such as the von Neumann architecture) with separate processing and storage functionalities and hence data transfer bottlenecks and increased silicon footprint. Beyond the von Neumann computer architecture, the combination of arithmetic-logic processing and (collocally) storage circuits provide a new and promising alternative for computer systems that overcome the many limitations of current technology. However, there are many technical challenges that face the implementation of universal blocks of both logic and memory functions using conventional silicon technology (transistor-transistor logic - TTL, and complementary metal oxide semiconductors - CMOS). Phase-change materials, such as Ge2Sb2Te5 (GST), provide a potential complement or replacement to these technologies to provide both processing and, collocally, storage capability. Existing research in phase-change memory technologies focused on two-terminal non-volatile devices for different memory and logic applications due to their ability to achieve logic-resistive switching in nanosecond time scale, their scalability down to few nanometer-scale cells, and low power requirements. To perform logic functionality, current two-terminal phase-change logic devices need to be connected in series or parallel circuits, and require sequential inputs to perform the required logic function (such as NAND and NOR). In this research programme, three-terminal (3T) non-volatile phase-change memories are proposed and investigated as potential alternative logic cells with simultaneous inputs as reconfigurable, non-volatile logic devices. A vertical 3T logic device structure is proposed in this work based on existing phase-change based memory cell architecture and original concept work by Ovshinsky. A comprehensive, multi-physics finite-element model of the vertical 3T device was constructed in Comsol Multiphysics. This model solves Laplace's equation for the electric potential due to the application of voltage sources. The calculated electric potential and fields provide the Joule heating source in the device, which is used to compute the temperature distribution through solution of the heat diffusion equation, which is necessary to activate the thermally-driven phase transition process. The physically realistic and computationally efficient nucleation- growth model was numerically implemented to model the phase change and resistance change in the Ge2Sb2Te5 (GST) phase-change material in the device, which is combined with the finite- element model using the Matlab programming interface. The changes in electrical and thermal conductivities in the GST region are taken into account following the thermally activated phase transformations between the amorphous-crystalline states using effective medium theory. To determine the appropriate voltage and temperature conditions for the SET and RESET operations, and to optimise the materials and thicknesses of the thermal and heating layers in the device, comprehensive steady-state parametric simulations were carried out using the finite-element multi-physics model. Simulations of transient cycles of writing (SET) and erasing (RESET) processes using appropriate voltage pulses were then carried out on the designed vertical 3T device to study the phase transformations for practical reconfigurable logic operations. The simulations indicated excellent resistance contrast between the logic 1 and 0 states, and successfully demonstrated the feasibility of programming the logic functions of NAND and NOR gates using this 3T configuration.
Supervisor: Aziz, M. M. ; Wright, C. D. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available