Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761753
Title: Locally resonant metamaterial for surface acoustic waves
Author: Ash, Benjamin James
ISNI:       0000 0004 7653 405X
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The control of surface acoustic waves (SAWs) using arrays of annular holes was investigated both experimentally and through numerical modelling. Periodic elastic composites, phononic crystals (PnCs), were designed using these annular holes as constituent elements. Local resonances associated with the annular hole structure were found to induce phonon bandgaps of a highly frequency tailorable nature, at frequencies where radiation of acoustic energy into the bulk of the substrate medium is avoided. These bandgaps are numerically demonstrated to exhibit order-of-magnitude improved extinction ratios for finite numbers of PnC elements, relative to the commonly used cylindrical pillar architecture. Devices fabricated on commercially available lithium niobate SAW delay lines verify the predicted behaviour. Through laser knife-edge detector vibrometry, a bandgap attenuation of 24.5 dB at 97 MHz was measured, in excellent agreement with finite element method (FEM) simulations. The first reported experimental evidence of subwavelength confinement of propagating SAWs was realised using the same annular hole PnC concept. Defect holes of perturbed resonant frequencies are included within the PnC to define waveguides and cavities. Confinement within these defects was demonstrated to occur at subwavelength frequencies which was experimentally observed in fabricated cavities using standard SAW transducers, as measured by laser Doppler vibrometry. The success of this result was attributed to the impedance matching of hybridised modes to Rayleigh SAWs in un-patterned substrates at the defect resonance. The work here has the potential to transform the field by providing a method to enhance SAW interactions, which is a route towards the realisation of many lab-on-chip applications. Finally, the use of annular hole arrays as negative refraction metamaterials was investigated. The symmetry was broken of the unit cells by alternating either the locally resonant frequencies or the distance separating the constituent elements. Both methods, called the bi-dispersive and bi-periodic methods, were numerically demonstrated to exhibit negative group velocity bands within the first Brillouin zone. Preliminary experimental results show that the design has the potential to be used in superlensing, where a SAW spot was imaged over a subwavelength flat lens. Future research looks to demonstrate that this result can be attributed to negative refraction.
Supervisor: Nash, Geoffrey R. ; Vukusic, Peter Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.761753  DOI: Not available
Keywords: Metamaterial ; Phononic Crsytal ; Surface Acoustic Waves ; Locally Resonant
Share: