Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760165
Title: Implicit emotion detection in text
Author: Orizu, Udochukwu
ISNI:       0000 0004 7432 1608
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In text, emotion can be expressed explicitly, using emotion-bearing words (e.g. happy, guilty) or implicitly without emotion-bearing words. Existing approaches focus on the detection of explicitly expressed emotion in text. However, there are various ways to express and convey emotions without the use of these emotion-bearing words. For example, given two sentences: “The outcome of my exam makes me happy” and “I passed my exam”, both sentences express happiness, with the first expressing it explicitly and the other implying it. In this thesis, we investigate implicit emotion detection in text. We propose a rule-based approach for implicit emotion detection, which can be used without labeled corpora for training. Our results show that our approach outperforms the lexicon matching method consistently and gives competitive performance in comparison to supervised classifiers. Given that emotions such as guilt and admiration which often require the identification of blameworthiness and praiseworthiness, we also propose an approach for the detection of blame and praise in text, using an adapted psychology model, Path model to blame. Lack of benchmarking dataset led us to construct a corpus containing comments of individuals’ emotional experiences annotated as blame, praise or others. Since implicit emotion detection might be useful for conflict-of-interest (CoI) detection in Wikipedia articles, we built a CoI corpus and explored various features including linguistic and stylometric, presentation, bias and emotion features. Our results show that emotion features are important when using Nave Bayes, but the best performance is obtained with SVM on linguistic and stylometric features only. Overall, we show that a rule-based approach can be used to detect implicit emotion in the absence of labelled data; it is feasible to adopt the psychology path model to blame for blame/praise detection from text, and implicit emotion detection is beneficial for CoI detection in Wikipedia articles.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.760165  DOI:
Share: