Use this URL to cite or link to this record in EThOS:
Title: Efficient streaming for high fidelity imaging
Author: McNamee, Joshua
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Researchers and practitioners of graphics, visualisation and imaging have an ever-expanding list of technologies to account for, including (but not limited to) HDR, VR, 4K, 360°, light field and wide colour gamut. As these technologies move from theory to practice, the methods of encoding and transmitting this information need to become more advanced and capable year on year, placing greater demands on latency, bandwidth, and encoding performance. High dynamic range (HDR) video is still in its infancy; the tools for capture, transmission and display of true HDR content are still restricted to professional technicians. Meanwhile, computer graphics are nowadays near-ubiquitous, but to achieve the highest fidelity in real or even reasonable time a user must be located at or near a supercomputer or other specialist workstation. These physical requirements mean that it is not always possible to demonstrate these graphics in any given place at any time, and when the graphics in question are intended to provide a virtual reality experience, the constrains on performance and latency are even tighter. This thesis presents an overall framework for adapting upcoming imaging technologies for efficient streaming, constituting novel work across three areas of imaging technology. Over the course of the thesis, high dynamic range capture, transmission and display is considered, before specifically focusing on the transmission and display of high fidelity rendered graphics, including HDR graphics. Finally, this thesis considers the technical challenges posed by incoming head-mounted displays (HMDs). In addition, a full literature review is presented across all three of these areas, detailing state-of-the-art methods for approaching all three problem sets. In the area of high dynamic range capture, transmission and display, a framework is presented and evaluated for efficient processing, streaming and encoding of high dynamic range video using general-purpose graphics processing unit (GPGPU) technologies. For remote rendering, state-of-the-art methods of augmenting a streamed graphical render are adapted to incorporate HDR video and high fidelity graphics rendering, specifically with regards to path tracing. Finally, a novel method is proposed for streaming graphics to a HMD for virtual reality (VR). This method utilises 360° projections to transmit and reproject stereo imagery to a HMD with minimal latency, with an adaptation for the rapid local production of depth maps.
Supervisor: Not available Sponsor: Jaguar Land Rover ; Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software