Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759651
Title: Macro-micro approach for mining public sociopolitical opinion from social media
Author: Wang, Bo
ISNI:       0000 0004 7431 6817
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
During the past decade, we have witnessed the emergence of social media, which has prominence as a means for the general public to exchange opinions towards a broad range of topics. Furthermore, its social and temporal dimensions make it a rich resource for policy makers and organisations to understand public opinion. In this thesis, we present our research in understanding public opinion on Twitter along three dimensions: sentiment, topics and summary. In the first line of our work, we study how to classify public sentiment on Twitter. We focus on the task of multi-target-specific sentiment recognition on Twitter, and propose an approach which utilises the syntactic information from parse-tree in conjunction with the left-right context of the target. We show the state-of-the-art performance on two datasets including a multi-target Twitter corpus on UK elections which we make public available for the research community. Additionally we also conduct two preliminary studies including cross-domain emotion classification on discourse around arts and cultural experiences, and social spam detection to improve the signal-to-noise ratio of our sentiment corpus. Our second line of work focuses on automatic topical clustering of tweets. Our aim is to group tweets into a number of clusters, with each cluster representing a meaningful topic, story, event or a reason behind a particular choice of sentiment. We explore various ways of tackling this challenge and propose a two-stage hierarchical topic modelling system that is efficient and effective in achieving our goal. Lastly, for our third line of work, we study the task of summarising tweets on common topics, with the goal to provide informative summaries for real-world events/stories or explanation underlying the sentiment expressed towards an issue/entity. As most existing tweet summarisation approaches rely on extractive methods, we propose to apply state-of-the-art neural abstractive summarisation model for tweets. We also tackle the challenge of cross-medium supervised summarisation with no target-medium training resources. To the best of our knowledge, there is no existing work on studying neural abstractive summarisation on tweets. In addition, we present a system for providing interactive visualisation of topic-entity sentiments and the corresponding summaries in chronological order. Throughout our work presented in this thesis, we conduct experiments to evaluate and verify the effectiveness of our proposed models, comparing to relevant baseline methods. Most of our evaluations are quantitative, however, we do perform qualitative analyses where it is appropriate. This thesis provides insights and findings that can be used for better understanding public opinion in social media.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.759651  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software
Share: