Use this URL to cite or link to this record in EThOS:
Title: Tracing star formation and AGN activity at radio frequencies
Author: Molnár, Dániel Csaba
ISNI:       0000 0004 7431 6120
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
My research has focused on locating and measuring star formation and AGN activity in different environments with interferometric and single-dish radio observations. As my first PhD project, I studied the complex interaction between an intermediate redshift (z 0.3) starburst galaxy and a nearby ( 7 kpc separation) QSO using sub-arcsecond VLA observations. I found new evidence for jet-induced star formation activity in the companion galaxy, making the system a strong candidate for this rare, and potentially important process in the early Universe. In my second paper, I investigated the infrared-radio correlation (IRRC) of spheroid- and disc-dominated galaxies in the COSMOS field out to z 1.5. With 1.4 GHz data and Herschel photometry I found that the redshift evolution reported in recent works is due to an increasing radio excess emission associated with spheroid-dominated galaxies, compared to disc-dominated ones, i.e. the ‘purest' star-forming systems in our sample. I theorize that the extra radio power in spheroid-dominated systems is due to low-level AGN activity, even though these sources were not identified by most commonly-used diagnostics as AGN hosts. This finding will significantly increase the accuracy of future high-redshift radio surveys measuring star formation. In my third project I assembled and analysed the largest-to-date low-z IRRC sample of galaxies. I demonstrated the importance of selection effects influencing IRRC statistics, and carried out an improved IRRC analysis that yielded more accurate measures of the correlation's properties. With rich ancillary data it will provide insight into the physical processes that give rise to the IRRC. Finally, I adopted an MCMC-based model optimization to fit a radiative transfer model to ammonia line spectra of a binary molecular cloud core. I determined the physical structures and the masses of the cores and found they are gravitationally unbound.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QB0806 Stellar evolution