Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759346
Title: Investigating the role of Zn2+ in regulating the function of intracellular Ca2+-release channels
Author: Reilly-O'Donnell, Benedict
ISNI:       0000 0004 7431 386X
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 24 Sep 2023
Access from Institution:
Abstract:
The tightly regulated openings of the cardiac ryanodine receptor (RyR2) help to ensure that intracellular Ca2+- release from the sarcoplasmic reticulum (SR) can only occur when heart contractions are required. Usually this process is self-regulatory, where Ca2+ both activates and inhibits release of further Ca2+ from the SR. In the progression of heart failure some of this control is lost and in rest periods Ca2+ can leak from the SR into the cytosol. Recent evidence has suggested that Zn2+- dyshomeostasis may contribute to SR Ca2+- leak but the underlying mechanism is unclear. Using single channel electrophysiological studies in combination with live cell imaging of HEK 293 and fibroblasts, this study reveals that Zn2+, along with Ca2+ and the inhibitor Mg2+, plays a physiological role in the grading of Ca2+- release via RyR2. Importantly the data reveal that pathophysiological concentrations of Zn2+ (> 100pM) within the cytosol remove the requirement of Ca2+ to activate RyR2, resulting in irregular channel activity even in the presence of Mg2+. This increase in channel open probability due to Zn2+ is known to be associated with increased Ca2+- release events such as Ca2+ sparks suggesting that Zn2+ is a regulator of the SR Ca2+-leak current. A potential source of releasable Zn2+, which could modulate RyR2 activity in cardiomyocytes, are the acidic organelles (endosomes and lysosomes). This study provides key evidence that the two pore channels (TPCs), which are expressed on the surface of these organelles, are candidate channels for ligand-gated release of Zn2+. Importantly this research demonstrates that dysregulated Zn2+ homeostasis, resulting in elevated Zn2+ within the lysosome, has severe consequences upon cellular Ca2+- release from fibroblasts, which is primarily the result of Zn2+ acting as a pore blocker of TPC2. Together these data reveal a key role of Zn2+ as a second messenger which can regulate intracellular Ca2+- release in both health and disease.
Supervisor: Pitt, Samantha Jane Sponsor: University of St Andrews
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.759346  DOI: Not available
Keywords: Calcium dynamics ; Zinc ; Ryanodine receptor ; Two pore channel ; Electrophysiology ; QP535.C2R4 ; Intracellular calcium--Physiological transport ; Ryanodine--Receptors ; Zinc--Physiological effect
Share: