Use this URL to cite or link to this record in EThOS:
Title: Study of the role of plant nuclear envelope and lamina-like components in nuclear and chromatin organisation using 3D imaging
Author: Poulet, Axel
ISNI:       0000 0004 7430 8120
Awarding Body: Oxford Brookes University
Current Institution: Oxford Brookes University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
The linker of nucleoskeleton and cytoskeleton (LINC) complex is an evolutionarily well-conserved protein bridge connecting the cytoplasmic and nuclear compartments across the nuclear membrane. While recent data supports its function in nuclear morphology and meiosis, its implication for chromatin organisation has been less studied in plants. The fi aim of this work was to develop NucleusJ a simple and user-friendly ImageJ plugin dedicated to the characterisation of nuclear morphol- ogy and chromatin organisation in 3D. NucleusJ quantifies 15 parameters including shape and size of nuclei as well as intra-nuclear objects and their position within the nucleus. A step-by-step documentation is available for self-training, together with data sets of nuclei with diff t nuclear organisation. Several improvements are ongoing to release a new version of this plugin. In a second part of this work, 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the plant model Arabidopsis thaliana in which heterochromatin domains cluster in conspicuous chromatin regions called chromo- centres. Chromocentres form a repressive chromatin environment contributing to the transcriptional silencing of repeated sequences a general mechanism needed for genome stability. Quantitative measurements of 3D position of chromocentres in the nucleus indicate that most chromocentres are situated in close proximity to the periphery of the nucleus but that this distance can be altered according to nuclear volume or in specific mutants affecting the LINC complex. Finally, the LINC com- plex is proposed to contribute at the proper chromatin organisation and positioning since its alteration is associated with the release of transcriptional silencing as well as decompaction of heterochromatic sequences. The last part of this work takes ad- vantage of available genomic sequences and RNA-seq data to explore the evolution of NE proteins in plants and propose a minimal requirement to built the simplest functional NE. Altogether, work achieved in this thesis associate genetics, molecular biology, bioinformatics and imaging to better understand the contribution of the nuclear envelope in nuclear morphology and chromatin organisation and suggests the functional implication of the LINC complex in these processes.
Supervisor: Evans, David ; Tatout, Christophe Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral