Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757780
Title: Structure, metamorphism, and tectonics of the northern Oman-UAE ophiolite and underlying metamorphic sole
Author: Ambrose, Tyler
ISNI:       0000 0004 7430 5894
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Ophiolites - thrust sheets of oceanic lithosphere that have been emplaced onto the continental margin - provide the opportunity to explore the structure and genesis of oceanic crust. As many ophiolites formed above subduction zones, they also allow for the investigation of mantle wedge and subduction interface processes. This the- sis examines the Oman-United Arab Emirates (UAE) ophiolite, which is the largest and most intensely studied ophiolite on Earth. Three distinct problems are addressed. (1) Recent research has proposed that the architecture and tectonic evolution of the ophiolite in the UAE differs from in Oman. In Chapter 2, I test this hypothesis by integrating new geological mapping and field observations with previously published maps of the ophiolite in the UAE. My results indicate that the ophiolite is gently folded, but otherwise largely intact. I demonstrate that the architecture of the ophi- olite in the UAE is not significantly different from in Oman. Thus, there is no basis for a different tectonic evolution as recently proposed. (2) Observations from exper- iments and small-scale natural shear zones indicate that volumetrically-minor phases can control strain localization. In Chapter 3, I test the hypothesis that minor phases control strain-localisation at plate boundaries. To do so, I analyzed peridotites from the base of the ophiolite, a palaeosubduction interface. My results demonstrate that minor phases limited olivine grain growth, which led to rheological weakening. (3) The mechanisms by which metamorphic soles detached from the downgoing slab and accreted to the hanging-wall mantle is unclear. In Chapter 4, I examine a transect across the metamorphic sole in the UAE. My results reveal that granulite formation was more extensive than is typically considered. I propose that granulite formation resulted in rheological strengthening, which caused the subduction interface to migrate into the downgoing slab and accrete the metamorphic sole.
Supervisor: Waters, Dave ; Searle, Michael Sponsor: Abu Dhabi Petroleum Institute
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.757780  DOI: Not available
Keywords: geology ; earth science ; metamorphic sole ; structural geology ; tectonics ; Oman UAE ophiolite ; subduction zone ; metamorphic petrology ; electron backscatter diffraction ; microstructure
Share: