Use this URL to cite or link to this record in EThOS:
Title: In-wheel motors for electric vehicles
Author: Yang, Sichao
ISNI:       0000 0004 7429 9834
Awarding Body: Newcastle University
Current Institution: University of Newcastle upon Tyne
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
The in-wheel motor technology as the source of traction for electric vehicles has been researched recently because it is compact and ease-to-integrate. The motor is housed in the wheel. Since the room for the motor is tightly defined by the size of the wheel and there is no gearing system, the motor must have a high torque density to drive the vehicle directly and a high efficiency to keep cool. The existing motor uses a surface-mounted magnet topology. To make it more cost-competitive, the magnet material needs to be reduced while maintaining the torque performance at the rated operating condition. It is the motive of this Ph.D. research. The thesis starts with a brief introduction on the background of the electric vehicle. Then the major challenges of the in-wheel motor technology are summarised. With the derived specifications, an induction machine and a switched reluctance machine are then simulated and analysed. Still, the permanent magnet synchronous machine is proved to have the highest torque density. Change from surface-mounted to interior topology, six new magnet topologies are investigated. The V-shaped interior magnet topology shows superior torque-to-magnet-mass ratio and is easy-to-manufacture. It gives 96% torque while using 56% of the magnet mass compared to the existing motor due to the assist from the additional reluctance torque and the lower magnetic circuit reluctance. The key to use less magnet mass while avoiding the demagnetisation is the front iron shielding effect. The analytical explanation on the better resistance to demagnetisation in the V-shaped motor is provided. The magnet loss mechanism is discussed for proper segmentation. Detailed design adjustments are made to compromise between the torque-to-magnet-mass ratio and the manufactural practicality. Issues regarding to lower mechanical rigidity occurred in initial assembly of the prototype and solutions are proposed. Followed by successful assembly, experimental tests were conducted and results show good agreement with the simulation. A specific form of torque ripple is found in the V-shaped motor and occurs generally in all fractional-slot concentrated-winding machines with saliency. It is explained by an analytical model. This model is also extended to explain the generally lower reluctance torque in vi fractional-slot concentrated-winding machines. Potential design improvements are suggested and simulated for future versions.
Supervisor: Not available Sponsor: Protean Electric
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available