Use this URL to cite or link to this record in EThOS:
Title: CAMP-BDI : an approach for multiagent systems robustness through capability-aware agents maintaining plans
Author: White, Alan Gordon
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Rational agent behaviour is frequently achieved through the use of plans, particularly within the widely used BDI (Belief-Desire-Intention) model for intelligent agents. As a consequence, preventing or handling failure of planned activity is a vital component in building robust multiagent systems; this is especially true in realistic environments, where unpredictable exogenous change during plan execution may threaten intended activities. Although reactive approaches can be employed to respond to activity failure through replanning or plan-repair, failure may have debilitative effects that act to stymie recovery and, potentially, hinder subsequent activity. A further factor is that BDI agents typically employ deterministic world and plan models, as probabilistic planning methods are typical intractable in realistically complex environments. However, deterministic operator preconditions may fail to represent world states which increase the risk of activity failure. The primary contribution of this thesis is the algorithmic design of the CAMP-BDI (Capability Aware, Maintaining Plans) approach; a modification of the BDI reasoning cycle which provides agents with beliefs and introspective reasoning to anticipate increased risk of failure and pro-actively modify intended plans in response. We define a capability meta-knowledge model, providing information to identify and address threats to activity success using precondition modelling and quantitative quality estimation. This also facilitates semantic-independent communication of capability information for general advertisement and of dependency information - we define use of the latter, within a structured messaging approach, to extend local agent algorithms towards decentralized, distributed robustness. Finally, we define a policy based approach for dynamic modification of maintenance behaviour, allowing response to observations made during runtime and with potential to improve re-usability of agents in alternate environments. An implementation of CAMP-BDI is compared against an equivalent reactive system through experimentation in multiple perturbation configurations, using a logistics domain. Our empirical evaluation indicates CAMP-BDI has significant benefit if activity failure carries a strong risk of debilitative consequence.
Supervisor: Tate, Austin ; Rovatsos, Michael ; Potter, Stephen Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: CAMP-BDI ; realistic environments ; reactive methods ; activity failure ; proactive robustness ; BDI model ; agent robustness