Use this URL to cite or link to this record in EThOS:
Title: Effects of the availability of floral resources on plant-pollinator interactions and the implications for the long-term survival of plant populations
Author: Evans, Tracie Marie
ISNI:       0000 0004 7429 833X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
1. Insect pollinators have been shown to alter their foraging patterns in response to habitat and landscape composition, particularly in relation to changes in the availability of floral resources which provide essential pollen and nectar provisions. Changes to pollinator behaviour and community composition, may alter the distance, directness and frequency of pollen movement and thus, the compatibility and genetic relatedness of pollen transferred between plants. We still lack good understanding of how variation in the spatial and temporal availability of floral resources drives pollinator responses and in turn, affects the fitness of outcrossing plants. Knowledge in this area could contribute to improved management interventions to enhance pollination services for plant conservation. 2. Through a combination of habitat and landscape scale field experiments, I explored how the availability of floral resources at different spatial scales affected plant-pollinator interactions, pollen transfer and mating success in plant populations, particularly those isolated from conspecifics. This involved introducing different species of plants in experimental arrays across a range of study systems that varied in structure and floral availability. Over the course of the thesis, I measured the community composition and behaviour of pollinators visiting experimental arrays; focusing on traits considered important for pollen transfer (e.g. Inter-tegular ('IT') span). Pollen movement was quantified within and between populations (5-150m) and the resulting plant outcrossing rates were measured using different methods including paternity analysis and the use of a dominance inheritance system. In addition, the implications of variations in pollinator foraging and pollination services can be attributed to pollen and gene flow and subsequently the reproduction and fitness of plants were assessed as a means of predicting the impacts on longer-term plant survival. 3. Findings from this thesis demonstrate reductions in the activity density (the abundance of actively foraging pollinators) and richness of pollinators and thus, the potential for plant visitation in response to a high abundance of floral resources within a habitat. This led to disruptions in pollen transfer, illustrated through a lower incidence of intra and inter-population pollen movement, and ultimately, reduced plant outcrossing rates. In parallel, plant seed set and germination rates were also reduced in habitats with high resource availability. Changes to pollinator communities and pollination services varied with the spatial scale at which floral resources were measured. Pollinator communities (activity density, richness and IT span) were most affected by floral resource abundance at a local scale (1-50m), particularly within a 20m radius of a plant population. Intra-population pollen movement was similarly affected by floral resources at a local spatial scale (within a 1m radius of a plant population). In contrast, no effect was observed on pollinator communities, intra-population pollen movement or plant reproduction when floral resources were measured at a landscape scale (within a 100-1500m radius of a plant population). However, findings were variable across different experiments at the same scale of measurement. For instance, the availability of floral resources at a local scale did not always elicit an effect on plant reproduction. This reflects differences in plant species identity and the effects of breeding system and floral traits, illustrated through variations in visitation rates between plant species. Inconsistencies were further observed with pollinator activity density and richness, which were not related to floral resources at a habitat scale in one chapter. 4. This thesis highlights the importance of the availability of floral resources at a local scale on plant-pollinator interactions and pollination services to plants. Co-flowering plants within florally rich habitats compete for pollinators and subsequently, visitation and pollen transfer between individuals of low density plant populations is diluted rather than facilitated. This suggests that although pollinator abundance and diversity may be enhanced through florally rich habitats (e.g. habitats implemented under the agri-environment scheme), pollination services are not automatically improved for plants which are present at low frequency in the landscape. This needs to be considered when designing and implementing management for threatened or isolated plants where plants may instead benefit from focused interventions. For instance, pollination services may be increased by efforts to maximise the facilitative effect of surrounding habitats, while increasing the ability of threatened or isolated plants to withstand competition from co-flowering plants.
Supervisor: Ennos, Richard ; Cavers, Stephen Sponsor: Natural Environment Research Council (NERC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: pollinators ; pollinator foraging ; plants ; landscape management ; pollen movement ; agri-environment schemes