Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.756832
Title: Obstacle detection and emergency exit sign recognition for autonomous navigation using camera phone
Author: Mohammed, Abdulmalik
ISNI:       0000 0004 7429 6895
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In this research work, we develop an obstacle detection and emergency exit sign recognition system on a mobile phone by extending the feature from accelerated segment test detector with Harris corner filter. The first step often required for many vision based applications is the detection of objects of interest in an image. Hence, in this research work, we introduce emergency exit sign detection method using colour histogram. The hue and saturation component of an HSV colour model are processed into features to build a 2D colour histogram. We backproject a 2D colour histogram to detect emergency exit sign from a captured image as the first task required before performing emergency exit sign recognition. The result of classification shows that the 2D histogram is fast and can discriminate between objects and background with accuracy. One of the challenges confronting object recognition methods is the type of image feature to compute. In this work therefore, we present two feature detectors and descriptor methods based on the feature from accelerated segment test detector with Harris corner filter. The first method is called Upright FAST-Harris and binary detector (U-FaHB), while the second method Scale Interpolated FAST-Harris and Binary (SIFaHB). In both methods, feature points are extracted using the accelerated segment test detectors and Harris filter to return the strongest corner points as features. However, in the case of SIFaHB, the extraction of feature points is done across the image plane and along the scale-space. The modular design of these detectors allows for the integration of descriptors of any kind. Therefore, we combine these detectors with binary test descriptor like BRIEF to compute feature regions. These detectors and the combined descriptor are evaluated using different images observed under various geometric and photometric transformations and the performance is compared with other detectors and descriptors. The results obtained show that our proposed feature detector and descriptor method is fast and performs better compared with other methods like SIFT, SURF, ORB, BRISK, CenSurE. Based on the potential of U-FaHB detector and descriptor, we extended it for use in optical flow computation, which we termed the Nearest-flow method. This method has the potential of computing flow vectors for use in obstacle detection. Just like any other new methods, we evaluated the Nearest flow method using real and synthetic image sequences. We compare the performance of the Nearest-flow with other methods like the Lucas and Kanade, Farneback and SIFT-flow. The results obtained show that our Nearest-flow method is faster to compute and performs better on real scene images compared with the other methods. In the final part of this research, we demonstrate the application potential of our proposed methods by developing an obstacle detection and exit sign recognition system on a camera phone and the result obtained shows that the methods have the potential to solve this vision based object detection and recognition problem.
Supervisor: Morris, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.756832  DOI: Not available
Keywords: Mobile phone ; image Processing ; Image Analysis ; Unsupervised Learning ; Image Segmentation. ; Supervised Learning ; Autonomous Navigation ; Probability Density Function ; Optical flow ; Feature Extraction ; Feature Description ; Time to Contact Information ; Colour Histogram ; Image Classification
Share: