Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.756682
Title: Role of macromolecules in coccolithophore biomineralization
Author: Walker, Jessica Mary
ISNI:       0000 0004 7429 5526
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
Abstract:
Biomineralization refers to the production of mineralized tissues by organisms. The fine control which organisms can exert over this process produces crystals with morphologies and properties contrasting to that of non-biogenic crystals and specifically altered to suit the required functional need. A key model system of biomineralization are a unicellular marine algae, coccolithophores, which produce calcium carbonate scales known as coccoliths. These coccoliths are comprised of arrangements of single crystals of calcite interlocked to form a plate-shaped structure. Coccoliths are developed intracellularly in a specialised compartment called the coccolith vesicle, before being extruded to the cell surface. In this work, two vital components of the coccolith biomineralization process are investigated - a soluble polysaccharide thought to act as a habit modifier and an insoluble organic scaffold known as a baseplate that provides the surface for nucleation and growth of the crystals. Whilst both these elements are thought to play a key part in the biomineralization process, the role of each is not fully understood. To investigate the effect of coccolith-associated polysaccharides (CAPs) on nucleation and polymorph selection, two systems that promote different polymorphs of calcium carbonate were utilised. In both systems, the intracrystalline polysaccharide fraction extracted from one species, Gephyrocapsa oceanica, was able to promote calcite nucleation in vitro, even under conditions favouring the kinetically-privileged polymorphs of calcium carbonate: vaterite and aragonite. As this property is not observed with CAPs extracted from its 'sister species', Emiliania huxleyi, the in vivo function of CAPs may differ between the two species. Both cryo-transmission electron microscopy (cryoTEM) and scanning electron microscopy (SEM) were used to determine the mechanism of calcite growth in the presence of G. oceanica CAPs, showing its impact on the forming amorphous calcium carbonate (ACC), decreasing the size of the particles and producing irregular, angular particles. Using cryo-electron tomography (cryoET), it was possible to create a 3D representation of the structure of the baseplate from the coccolithophore Pleurochrysis carterae, revealing its two-sided organisation. Examination of several stages of the coccolith growth process demonstrated the interlocking nature of the calcite crystals that make up the coccolith and the progression of the crystal morphologies over time, and the interaction of these crystals with the baseplate rim. Additionally, the effect of inhibiting carbonic anhydrase (CA), an enzyme involved in the regulation of carbonate species, revealed that inhibition of CA can affect coccolithogenesis as well as cell proliferation.
Supervisor: Nudelman, Fabio ; Cockroft, Scott Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.756682  DOI: Not available
Keywords: coccolithophores ; coccoliths ; calcium carbonate ; carbon cycle ; baseplate ; CAPs ; carbonic anhydrase ; biomineralization ; Gephyrocapsa oceanica ; Pleurochrysis carterae
Share: