Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.756643
Title: Thermo-fluid modelling of electrical generator frames under forced convection in an oscillating water column environment
Author: Ahmed, Nisaar
ISNI:       0000 0004 7429 5139
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This PhD involved computational fluid dynamic simulations of finned generators cooling under forced convection in an oscillating water column environment. Various design changes to the upstream Wells turbine and its effect on the consequent cooling of the generator were investigated. Simulations were run in steady-state to obtain an initial condition, thereafter, unsteady simulations revealed a steadying of heat transfer over the course of multiple blade rotation cycles. This justified the use of steady-state for the remaining simulations over a range of flow coefficients. The results revealed that the heat transfer from the generator increased for tighter blade tip clearances, thicker blade profiles and greater turbine solidity. The heat transfer was found to increase with rising flow rate coefficient, which was adjusted by increasing the inlet velocity whilst maintaining the angular velocity of the turbine at a constant 2000 RPM. Additionally, the variation of turbine angular velocity at a fixed flow rate coefficient was investigated, the heat transfer was also found to increase with angular velocity, albeit by a far lesser extent. The inclusion of the Wells turbine upstream of the generator was investigated initially and was found to increase heat transfer due to the resulting impingement of airflow across the generator. In all design scenarios in which the heat transfer increases, there is also an observed increase in the mass flow rate of air, radially, towards the generator.
Supervisor: Mueller, Markus ; Ingram, David Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.756643  DOI: Not available
Keywords: computational fluid dynamics ; finned generators ; Wells turbine ; multiple blade rotation cycles ; heat transfer ; airflow
Share: